Toward Privacy in Public Databases View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2005

AUTHORS

Shuchi Chawla , Cynthia Dwork , Frank McSherry , Adam Smith , Hoeteck Wee

ABSTRACT

We initiate a theoretical study of the census problem. Informally, in a census individual respondents give private information to a trusted party (the census bureau), who publishes a sanitized version of the data. There are two fundamentally conflicting requirements: privacy for the respondents and utility of the sanitized data. Unlike in the study of secure function evaluation, in which privacy is preserved to the extent possible given a specific functionality goal, in the census problem privacy is paramount; intuitively, things that cannot be learned “safely” should not be learned at all.An important contribution of this work is a definition of privacy (and privacy compromise) for statistical databases, together with a method for describing and comparing the privacy offered by specific sanitization techniques. We obtain several privacy results using two different sanitization techniques, and then show how to combine them via cross training. We also obtain two utility results involving clustering. More... »

PAGES

363-385

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-30576-7_20

DOI

http://dx.doi.org/10.1007/978-3-540-30576-7_20

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1012215168


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0804", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Data Format", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Carnegie Mellon University", 
          "id": "http://www.grid.ac/institutes/grid.147455.6", 
          "name": [
            "Carnegie Mellon University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chawla", 
        "givenName": "Shuchi", 
        "id": "sg:person.011264156035.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011264156035.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Microsoft Research SVC", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Microsoft Research SVC"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dwork", 
        "givenName": "Cynthia", 
        "id": "sg:person.016065712157.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016065712157.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Microsoft Research SVC", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Microsoft Research SVC"
          ], 
          "type": "Organization"
        }, 
        "familyName": "McSherry", 
        "givenName": "Frank", 
        "id": "sg:person.016226764441.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016226764441.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Weizmann Institute of Science", 
          "id": "http://www.grid.ac/institutes/grid.13992.30", 
          "name": [
            "Weizmann Institute of Science"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Smith", 
        "givenName": "Adam", 
        "id": "sg:person.013307226666.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013307226666.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Berkeley", 
          "id": "http://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "University of California, Berkeley"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wee", 
        "givenName": "Hoeteck", 
        "id": "sg:person.011724333061.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011724333061.15"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2005", 
    "datePublishedReg": "2005-01-01", 
    "description": "We initiate a theoretical study of the census problem. Informally, in a census individual respondents give private information to a trusted party (the census bureau), who publishes a sanitized version of the data. There are two fundamentally conflicting requirements: privacy for the respondents and utility of the sanitized data. Unlike in the study of secure function evaluation, in which privacy is preserved to the extent possible given a specific functionality goal, in the census problem privacy is paramount; intuitively, things that cannot be learned \u201csafely\u201d should not be learned at all.An important contribution of this work is a definition of privacy (and privacy compromise) for statistical databases, together with a method for describing and comparing the privacy offered by specific sanitization techniques. We obtain several privacy results using two different sanitization techniques, and then show how to combine them via cross training. We also obtain two utility results involving clustering.", 
    "editor": [
      {
        "familyName": "Kilian", 
        "givenName": "Joe", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-30576-7_20", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-24573-5", 
        "978-3-540-30576-7"
      ], 
      "name": "Theory of Cryptography", 
      "type": "Book"
    }, 
    "keywords": [
      "sanitization techniques", 
      "secure function evaluation", 
      "definition of privacy", 
      "sanitized data", 
      "privacy results", 
      "trusted party", 
      "sanitized version", 
      "privacy", 
      "census problem", 
      "statistical databases", 
      "functionality goal", 
      "private information", 
      "conflicting requirements", 
      "utility results", 
      "function evaluations", 
      "public databases", 
      "database", 
      "things", 
      "technique", 
      "requirements", 
      "information", 
      "cross training", 
      "data", 
      "version", 
      "goal", 
      "training", 
      "parties", 
      "work", 
      "definition", 
      "method", 
      "results", 
      "utility", 
      "evaluation", 
      "important contribution", 
      "contribution", 
      "individual respondents", 
      "theoretical study", 
      "study", 
      "problem", 
      "respondents", 
      "extent"
    ], 
    "name": "Toward Privacy in Public Databases", 
    "pagination": "363-385", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1012215168"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-30576-7_20"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-30576-7_20", 
      "https://app.dimensions.ai/details/publication/pub.1012215168"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-06-01T22:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/chapter/chapter_220.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-540-30576-7_20"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-30576-7_20'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-30576-7_20'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-30576-7_20'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-30576-7_20'


 

This table displays all metadata directly associated to this object as RDF triples.

142 TRIPLES      23 PREDICATES      68 URIs      60 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-30576-7_20 schema:about anzsrc-for:08
2 anzsrc-for:0804
3 anzsrc-for:0806
4 schema:author N42bffa626c3449989815263bb1365ad7
5 schema:datePublished 2005
6 schema:datePublishedReg 2005-01-01
7 schema:description We initiate a theoretical study of the census problem. Informally, in a census individual respondents give private information to a trusted party (the census bureau), who publishes a sanitized version of the data. There are two fundamentally conflicting requirements: privacy for the respondents and utility of the sanitized data. Unlike in the study of secure function evaluation, in which privacy is preserved to the extent possible given a specific functionality goal, in the census problem privacy is paramount; intuitively, things that cannot be learned “safely” should not be learned at all.An important contribution of this work is a definition of privacy (and privacy compromise) for statistical databases, together with a method for describing and comparing the privacy offered by specific sanitization techniques. We obtain several privacy results using two different sanitization techniques, and then show how to combine them via cross training. We also obtain two utility results involving clustering.
8 schema:editor Ndfce463832934e4b8b3eaedc1418bcb7
9 schema:genre chapter
10 schema:inLanguage en
11 schema:isAccessibleForFree true
12 schema:isPartOf Nc73bd6497f4744cf8bbff1744a8739ca
13 schema:keywords census problem
14 conflicting requirements
15 contribution
16 cross training
17 data
18 database
19 definition
20 definition of privacy
21 evaluation
22 extent
23 function evaluations
24 functionality goal
25 goal
26 important contribution
27 individual respondents
28 information
29 method
30 parties
31 privacy
32 privacy results
33 private information
34 problem
35 public databases
36 requirements
37 respondents
38 results
39 sanitization techniques
40 sanitized data
41 sanitized version
42 secure function evaluation
43 statistical databases
44 study
45 technique
46 theoretical study
47 things
48 training
49 trusted party
50 utility
51 utility results
52 version
53 work
54 schema:name Toward Privacy in Public Databases
55 schema:pagination 363-385
56 schema:productId N0d7ea47a90c242f298b0d1e7d8ca5c54
57 Ncfcaf2d80bfe4db4b821fe62fe441001
58 schema:publisher N3b92d99bb66f4997ada2a6cffb07db91
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012215168
60 https://doi.org/10.1007/978-3-540-30576-7_20
61 schema:sdDatePublished 2022-06-01T22:30
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher N0eabfd151517460581fc94320a0308a0
64 schema:url https://doi.org/10.1007/978-3-540-30576-7_20
65 sgo:license sg:explorer/license/
66 sgo:sdDataset chapters
67 rdf:type schema:Chapter
68 N0d7ea47a90c242f298b0d1e7d8ca5c54 schema:name dimensions_id
69 schema:value pub.1012215168
70 rdf:type schema:PropertyValue
71 N0eabfd151517460581fc94320a0308a0 schema:name Springer Nature - SN SciGraph project
72 rdf:type schema:Organization
73 N1863b46bb34a41f69044ec8d4abdefc0 rdf:first sg:person.011724333061.15
74 rdf:rest rdf:nil
75 N2b5e94788f56418f9a9bc10c4ffa817e rdf:first sg:person.016226764441.61
76 rdf:rest N87ddbb883e5a4c3b936ccd29a7da0212
77 N3b92d99bb66f4997ada2a6cffb07db91 schema:name Springer Nature
78 rdf:type schema:Organisation
79 N42bffa626c3449989815263bb1365ad7 rdf:first sg:person.011264156035.69
80 rdf:rest N965309fb68984110a0d0993af2f4c137
81 N6682e3c816d54978a34a2a514311d646 schema:familyName Kilian
82 schema:givenName Joe
83 rdf:type schema:Person
84 N87ddbb883e5a4c3b936ccd29a7da0212 rdf:first sg:person.013307226666.21
85 rdf:rest N1863b46bb34a41f69044ec8d4abdefc0
86 N965309fb68984110a0d0993af2f4c137 rdf:first sg:person.016065712157.59
87 rdf:rest N2b5e94788f56418f9a9bc10c4ffa817e
88 Nc73bd6497f4744cf8bbff1744a8739ca schema:isbn 978-3-540-24573-5
89 978-3-540-30576-7
90 schema:name Theory of Cryptography
91 rdf:type schema:Book
92 Ncfcaf2d80bfe4db4b821fe62fe441001 schema:name doi
93 schema:value 10.1007/978-3-540-30576-7_20
94 rdf:type schema:PropertyValue
95 Ndfce463832934e4b8b3eaedc1418bcb7 rdf:first N6682e3c816d54978a34a2a514311d646
96 rdf:rest rdf:nil
97 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
98 schema:name Information and Computing Sciences
99 rdf:type schema:DefinedTerm
100 anzsrc-for:0804 schema:inDefinedTermSet anzsrc-for:
101 schema:name Data Format
102 rdf:type schema:DefinedTerm
103 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
104 schema:name Information Systems
105 rdf:type schema:DefinedTerm
106 sg:person.011264156035.69 schema:affiliation grid-institutes:grid.147455.6
107 schema:familyName Chawla
108 schema:givenName Shuchi
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011264156035.69
110 rdf:type schema:Person
111 sg:person.011724333061.15 schema:affiliation grid-institutes:grid.47840.3f
112 schema:familyName Wee
113 schema:givenName Hoeteck
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011724333061.15
115 rdf:type schema:Person
116 sg:person.013307226666.21 schema:affiliation grid-institutes:grid.13992.30
117 schema:familyName Smith
118 schema:givenName Adam
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013307226666.21
120 rdf:type schema:Person
121 sg:person.016065712157.59 schema:affiliation grid-institutes:None
122 schema:familyName Dwork
123 schema:givenName Cynthia
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016065712157.59
125 rdf:type schema:Person
126 sg:person.016226764441.61 schema:affiliation grid-institutes:None
127 schema:familyName McSherry
128 schema:givenName Frank
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016226764441.61
130 rdf:type schema:Person
131 grid-institutes:None schema:alternateName Microsoft Research SVC
132 schema:name Microsoft Research SVC
133 rdf:type schema:Organization
134 grid-institutes:grid.13992.30 schema:alternateName Weizmann Institute of Science
135 schema:name Weizmann Institute of Science
136 rdf:type schema:Organization
137 grid-institutes:grid.147455.6 schema:alternateName Carnegie Mellon University
138 schema:name Carnegie Mellon University
139 rdf:type schema:Organization
140 grid-institutes:grid.47840.3f schema:alternateName University of California, Berkeley
141 schema:name University of California, Berkeley
142 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...