Ontology type: schema:Chapter
2005
AUTHORSGerald Fritz , Christin Seifert , Lucas Paletta , Horst Bischof
ABSTRACTA major goal of selective attention is to focus processing on relevant information to enable rapid and robust task performance. For the example of attentive visual object recognition, we investigate here the impact of top-down information on multi-stage processing, instead of integrating generic visual feature extraction into object specific interpretation. We discriminate between generic and specific task based filters that select task relevant information of different scope and specificity within a processing chain. Attention is applied by tuned early features to selectively respond to generic task related visual features, i.e., to information that is in general locally relevant for any kind of object search. The mapping from appearances to discriminative regions is then modeled using decision trees to accelerate processing. The focus of attention on discriminative patterns enables efficient recognition of specific objects, by means of a sparse object representation that enables selective, task relevant, and rapid object specific responses. In the experiments the performance in object recognition from single appearance patterns dramatically increased considering only discriminative patterns, and evaluation of complete image analysis under various degrees of partial occlusion and image noise resulted in highly robust recognition, even in the presence of severe occlusion and noise effects. In addition, we present performance evaluation on our public available reference object database (TSG-20). More... »
PAGES29-41
Attention and Performance in Computational Vision
ISBN
978-3-540-24421-9
978-3-540-30572-9
http://scigraph.springernature.com/pub.10.1007/978-3-540-30572-9_3
DOIhttp://dx.doi.org/10.1007/978-3-540-30572-9_3
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1032169666
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Psychology and Cognitive Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Artificial Intelligence and Image Processing",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Psychology",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Institute of Digital Image Processing, JOANNEUM RESEARCH, Forschungsgesellschaft mbH, Wastiangasse 6, A-8010, Graz, Austria",
"id": "http://www.grid.ac/institutes/grid.8684.2",
"name": [
"Institute of Digital Image Processing, JOANNEUM RESEARCH, Forschungsgesellschaft mbH, Wastiangasse 6, A-8010, Graz, Austria"
],
"type": "Organization"
},
"familyName": "Fritz",
"givenName": "Gerald",
"id": "sg:person.011015636117.31",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011015636117.31"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute of Digital Image Processing, JOANNEUM RESEARCH, Forschungsgesellschaft mbH, Wastiangasse 6, A-8010, Graz, Austria",
"id": "http://www.grid.ac/institutes/grid.8684.2",
"name": [
"Institute of Digital Image Processing, JOANNEUM RESEARCH, Forschungsgesellschaft mbH, Wastiangasse 6, A-8010, Graz, Austria"
],
"type": "Organization"
},
"familyName": "Seifert",
"givenName": "Christin",
"id": "sg:person.010257616672.34",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010257616672.34"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute of Digital Image Processing, JOANNEUM RESEARCH, Forschungsgesellschaft mbH, Wastiangasse 6, A-8010, Graz, Austria",
"id": "http://www.grid.ac/institutes/grid.8684.2",
"name": [
"Institute of Digital Image Processing, JOANNEUM RESEARCH, Forschungsgesellschaft mbH, Wastiangasse 6, A-8010, Graz, Austria"
],
"type": "Organization"
},
"familyName": "Paletta",
"givenName": "Lucas",
"id": "sg:person.010060055125.29",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010060055125.29"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute for Computer Graphics and Vision, Graz University of Technology, Inffeldgasse 16/II, A-8010, Graz, Austria",
"id": "http://www.grid.ac/institutes/grid.410413.3",
"name": [
"Institute for Computer Graphics and Vision, Graz University of Technology, Inffeldgasse 16/II, A-8010, Graz, Austria"
],
"type": "Organization"
},
"familyName": "Bischof",
"givenName": "Horst",
"id": "sg:person.013002347027.27",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013002347027.27"
],
"type": "Person"
}
],
"datePublished": "2005",
"datePublishedReg": "2005-01-01",
"description": "A major goal of selective attention is to focus processing on relevant information to enable rapid and robust task performance. For the example of attentive visual object recognition, we investigate here the impact of top-down information on multi-stage processing, instead of integrating generic visual feature extraction into object specific interpretation. We discriminate between generic and specific task based filters that select task relevant information of different scope and specificity within a processing chain. Attention is applied by tuned early features to selectively respond to generic task related visual features, i.e., to information that is in general locally relevant for any kind of object search. The mapping from appearances to discriminative regions is then modeled using decision trees to accelerate processing. The focus of attention on discriminative patterns enables efficient recognition of specific objects, by means of a sparse object representation that enables selective, task relevant, and rapid object specific responses. In the experiments the performance in object recognition from single appearance patterns dramatically increased considering only discriminative patterns, and evaluation of complete image analysis under various degrees of partial occlusion and image noise resulted in highly robust recognition, even in the presence of severe occlusion and noise effects. In addition, we present performance evaluation on our public available reference object database (TSG-20).",
"editor": [
{
"familyName": "Paletta",
"givenName": "Lucas",
"type": "Person"
},
{
"familyName": "Tsotsos",
"givenName": "John K.",
"type": "Person"
},
{
"familyName": "Rome",
"givenName": "Erich",
"type": "Person"
},
{
"familyName": "Humphreys",
"givenName": "Glyn",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-540-30572-9_3",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-540-24421-9",
"978-3-540-30572-9"
],
"name": "Attention and Performance in Computational Vision",
"type": "Book"
},
"keywords": [
"object recognition",
"discriminative patterns",
"visual feature extraction",
"complete image analysis",
"relevant information",
"visual object recognition",
"object search",
"object databases",
"object detection",
"multi-stage processing",
"robust recognition",
"generic tasks",
"feature extraction",
"visual features",
"severe occlusion",
"decision tree",
"specific tasks",
"specific objects",
"partial occlusion",
"processing chain",
"saliency measure",
"appearance patterns",
"object representations",
"performance evaluation",
"image analysis",
"efficient recognition",
"image noise",
"task",
"different scopes",
"recognition",
"information",
"processing",
"task-relevant information",
"focus of attention",
"noise effects",
"performance",
"features",
"task performance",
"objects",
"representation",
"database",
"major goal",
"search",
"extraction",
"detection",
"trees",
"attention",
"mapping",
"noise",
"goal",
"evaluation",
"filter",
"kind",
"example",
"occlusion",
"scope",
"experiments",
"patterns",
"specific interpretation",
"focus",
"means",
"measures",
"interpretation",
"analysis",
"chain",
"addition",
"impact",
"selective attention",
"appearance",
"degree",
"region",
"specificity",
"presence",
"response",
"effect",
"early feature",
"specific responses"
],
"name": "Attentive Object Detection Using an Information Theoretic Saliency Measure",
"pagination": "29-41",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1032169666"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-540-30572-9_3"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-540-30572-9_3",
"https://app.dimensions.ai/details/publication/pub.1032169666"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-20T07:43",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_210.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-540-30572-9_3"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-30572-9_3'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-30572-9_3'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-30572-9_3'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-30572-9_3'
This table displays all metadata directly associated to this object as RDF triples.
184 TRIPLES
23 PREDICATES
105 URIs
96 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-540-30572-9_3 | schema:about | anzsrc-for:08 |
2 | ″ | ″ | anzsrc-for:0801 |
3 | ″ | ″ | anzsrc-for:17 |
4 | ″ | ″ | anzsrc-for:1701 |
5 | ″ | schema:author | Ncff81d5e02b447ce88bb1b86e83200f7 |
6 | ″ | schema:datePublished | 2005 |
7 | ″ | schema:datePublishedReg | 2005-01-01 |
8 | ″ | schema:description | A major goal of selective attention is to focus processing on relevant information to enable rapid and robust task performance. For the example of attentive visual object recognition, we investigate here the impact of top-down information on multi-stage processing, instead of integrating generic visual feature extraction into object specific interpretation. We discriminate between generic and specific task based filters that select task relevant information of different scope and specificity within a processing chain. Attention is applied by tuned early features to selectively respond to generic task related visual features, i.e., to information that is in general locally relevant for any kind of object search. The mapping from appearances to discriminative regions is then modeled using decision trees to accelerate processing. The focus of attention on discriminative patterns enables efficient recognition of specific objects, by means of a sparse object representation that enables selective, task relevant, and rapid object specific responses. In the experiments the performance in object recognition from single appearance patterns dramatically increased considering only discriminative patterns, and evaluation of complete image analysis under various degrees of partial occlusion and image noise resulted in highly robust recognition, even in the presence of severe occlusion and noise effects. In addition, we present performance evaluation on our public available reference object database (TSG-20). |
9 | ″ | schema:editor | N2f66717c997e459c91a6be90aa862bf4 |
10 | ″ | schema:genre | chapter |
11 | ″ | schema:inLanguage | en |
12 | ″ | schema:isAccessibleForFree | false |
13 | ″ | schema:isPartOf | N434f9825d09f42dba3c2dd0c1eb09971 |
14 | ″ | schema:keywords | addition |
15 | ″ | ″ | analysis |
16 | ″ | ″ | appearance |
17 | ″ | ″ | appearance patterns |
18 | ″ | ″ | attention |
19 | ″ | ″ | chain |
20 | ″ | ″ | complete image analysis |
21 | ″ | ″ | database |
22 | ″ | ″ | decision tree |
23 | ″ | ″ | degree |
24 | ″ | ″ | detection |
25 | ″ | ″ | different scopes |
26 | ″ | ″ | discriminative patterns |
27 | ″ | ″ | early feature |
28 | ″ | ″ | effect |
29 | ″ | ″ | efficient recognition |
30 | ″ | ″ | evaluation |
31 | ″ | ″ | example |
32 | ″ | ″ | experiments |
33 | ″ | ″ | extraction |
34 | ″ | ″ | feature extraction |
35 | ″ | ″ | features |
36 | ″ | ″ | filter |
37 | ″ | ″ | focus |
38 | ″ | ″ | focus of attention |
39 | ″ | ″ | generic tasks |
40 | ″ | ″ | goal |
41 | ″ | ″ | image analysis |
42 | ″ | ″ | image noise |
43 | ″ | ″ | impact |
44 | ″ | ″ | information |
45 | ″ | ″ | interpretation |
46 | ″ | ″ | kind |
47 | ″ | ″ | major goal |
48 | ″ | ″ | mapping |
49 | ″ | ″ | means |
50 | ″ | ″ | measures |
51 | ″ | ″ | multi-stage processing |
52 | ″ | ″ | noise |
53 | ″ | ″ | noise effects |
54 | ″ | ″ | object databases |
55 | ″ | ″ | object detection |
56 | ″ | ″ | object recognition |
57 | ″ | ″ | object representations |
58 | ″ | ″ | object search |
59 | ″ | ″ | objects |
60 | ″ | ″ | occlusion |
61 | ″ | ″ | partial occlusion |
62 | ″ | ″ | patterns |
63 | ″ | ″ | performance |
64 | ″ | ″ | performance evaluation |
65 | ″ | ″ | presence |
66 | ″ | ″ | processing |
67 | ″ | ″ | processing chain |
68 | ″ | ″ | recognition |
69 | ″ | ″ | region |
70 | ″ | ″ | relevant information |
71 | ″ | ″ | representation |
72 | ″ | ″ | response |
73 | ″ | ″ | robust recognition |
74 | ″ | ″ | saliency measure |
75 | ″ | ″ | scope |
76 | ″ | ″ | search |
77 | ″ | ″ | selective attention |
78 | ″ | ″ | severe occlusion |
79 | ″ | ″ | specific interpretation |
80 | ″ | ″ | specific objects |
81 | ″ | ″ | specific responses |
82 | ″ | ″ | specific tasks |
83 | ″ | ″ | specificity |
84 | ″ | ″ | task |
85 | ″ | ″ | task performance |
86 | ″ | ″ | task-relevant information |
87 | ″ | ″ | trees |
88 | ″ | ″ | visual feature extraction |
89 | ″ | ″ | visual features |
90 | ″ | ″ | visual object recognition |
91 | ″ | schema:name | Attentive Object Detection Using an Information Theoretic Saliency Measure |
92 | ″ | schema:pagination | 29-41 |
93 | ″ | schema:productId | N05fd100a84394885b7f35bc167f08571 |
94 | ″ | ″ | Nda079a540d734ba28094bc9bd3af8fb1 |
95 | ″ | schema:publisher | N3db687d336604d4b8592eb907b6f801f |
96 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1032169666 |
97 | ″ | ″ | https://doi.org/10.1007/978-3-540-30572-9_3 |
98 | ″ | schema:sdDatePublished | 2022-05-20T07:43 |
99 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
100 | ″ | schema:sdPublisher | Ne2c920d0d66d4194a39dd15f2c18e970 |
101 | ″ | schema:url | https://doi.org/10.1007/978-3-540-30572-9_3 |
102 | ″ | sgo:license | sg:explorer/license/ |
103 | ″ | sgo:sdDataset | chapters |
104 | ″ | rdf:type | schema:Chapter |
105 | N0360eef51dd64d3494ba4c9d98ddd506 | schema:familyName | Tsotsos |
106 | ″ | schema:givenName | John K. |
107 | ″ | rdf:type | schema:Person |
108 | N05fd100a84394885b7f35bc167f08571 | schema:name | dimensions_id |
109 | ″ | schema:value | pub.1032169666 |
110 | ″ | rdf:type | schema:PropertyValue |
111 | N0f11d52d3a2846fb904e031e67a76011 | rdf:first | sg:person.013002347027.27 |
112 | ″ | rdf:rest | rdf:nil |
113 | N14bfee51a20644658c23fdaeba1ec090 | schema:familyName | Humphreys |
114 | ″ | schema:givenName | Glyn |
115 | ″ | rdf:type | schema:Person |
116 | N2b1072304ab245b39c525b41fe1b6ade | rdf:first | N0360eef51dd64d3494ba4c9d98ddd506 |
117 | ″ | rdf:rest | N34255b67fdf9446a99b7c15a2b7f5947 |
118 | N2f66717c997e459c91a6be90aa862bf4 | rdf:first | Nf41c30250deb481d8ae6a5b994c1bc43 |
119 | ″ | rdf:rest | N2b1072304ab245b39c525b41fe1b6ade |
120 | N34255b67fdf9446a99b7c15a2b7f5947 | rdf:first | N6f66066d0ba34189acfcf01d55781ec5 |
121 | ″ | rdf:rest | Na8bbd9f2b9744723aac7e2ec3780c333 |
122 | N3db687d336604d4b8592eb907b6f801f | schema:name | Springer Nature |
123 | ″ | rdf:type | schema:Organisation |
124 | N434f9825d09f42dba3c2dd0c1eb09971 | schema:isbn | 978-3-540-24421-9 |
125 | ″ | ″ | 978-3-540-30572-9 |
126 | ″ | schema:name | Attention and Performance in Computational Vision |
127 | ″ | rdf:type | schema:Book |
128 | N6f66066d0ba34189acfcf01d55781ec5 | schema:familyName | Rome |
129 | ″ | schema:givenName | Erich |
130 | ″ | rdf:type | schema:Person |
131 | Na8bbd9f2b9744723aac7e2ec3780c333 | rdf:first | N14bfee51a20644658c23fdaeba1ec090 |
132 | ″ | rdf:rest | rdf:nil |
133 | Ncff81d5e02b447ce88bb1b86e83200f7 | rdf:first | sg:person.011015636117.31 |
134 | ″ | rdf:rest | Nd5738d33b86d4afab3c3d54ae582b499 |
135 | Nd5738d33b86d4afab3c3d54ae582b499 | rdf:first | sg:person.010257616672.34 |
136 | ″ | rdf:rest | Nfa9dad0ee7ff4b9489573fc732b563fa |
137 | Nda079a540d734ba28094bc9bd3af8fb1 | schema:name | doi |
138 | ″ | schema:value | 10.1007/978-3-540-30572-9_3 |
139 | ″ | rdf:type | schema:PropertyValue |
140 | Ne2c920d0d66d4194a39dd15f2c18e970 | schema:name | Springer Nature - SN SciGraph project |
141 | ″ | rdf:type | schema:Organization |
142 | Nf41c30250deb481d8ae6a5b994c1bc43 | schema:familyName | Paletta |
143 | ″ | schema:givenName | Lucas |
144 | ″ | rdf:type | schema:Person |
145 | Nfa9dad0ee7ff4b9489573fc732b563fa | rdf:first | sg:person.010060055125.29 |
146 | ″ | rdf:rest | N0f11d52d3a2846fb904e031e67a76011 |
147 | anzsrc-for:08 | schema:inDefinedTermSet | anzsrc-for: |
148 | ″ | schema:name | Information and Computing Sciences |
149 | ″ | rdf:type | schema:DefinedTerm |
150 | anzsrc-for:0801 | schema:inDefinedTermSet | anzsrc-for: |
151 | ″ | schema:name | Artificial Intelligence and Image Processing |
152 | ″ | rdf:type | schema:DefinedTerm |
153 | anzsrc-for:17 | schema:inDefinedTermSet | anzsrc-for: |
154 | ″ | schema:name | Psychology and Cognitive Sciences |
155 | ″ | rdf:type | schema:DefinedTerm |
156 | anzsrc-for:1701 | schema:inDefinedTermSet | anzsrc-for: |
157 | ″ | schema:name | Psychology |
158 | ″ | rdf:type | schema:DefinedTerm |
159 | sg:person.010060055125.29 | schema:affiliation | grid-institutes:grid.8684.2 |
160 | ″ | schema:familyName | Paletta |
161 | ″ | schema:givenName | Lucas |
162 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010060055125.29 |
163 | ″ | rdf:type | schema:Person |
164 | sg:person.010257616672.34 | schema:affiliation | grid-institutes:grid.8684.2 |
165 | ″ | schema:familyName | Seifert |
166 | ″ | schema:givenName | Christin |
167 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010257616672.34 |
168 | ″ | rdf:type | schema:Person |
169 | sg:person.011015636117.31 | schema:affiliation | grid-institutes:grid.8684.2 |
170 | ″ | schema:familyName | Fritz |
171 | ″ | schema:givenName | Gerald |
172 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011015636117.31 |
173 | ″ | rdf:type | schema:Person |
174 | sg:person.013002347027.27 | schema:affiliation | grid-institutes:grid.410413.3 |
175 | ″ | schema:familyName | Bischof |
176 | ″ | schema:givenName | Horst |
177 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013002347027.27 |
178 | ″ | rdf:type | schema:Person |
179 | grid-institutes:grid.410413.3 | schema:alternateName | Institute for Computer Graphics and Vision, Graz University of Technology, Inffeldgasse 16/II, A-8010, Graz, Austria |
180 | ″ | schema:name | Institute for Computer Graphics and Vision, Graz University of Technology, Inffeldgasse 16/II, A-8010, Graz, Austria |
181 | ″ | rdf:type | schema:Organization |
182 | grid-institutes:grid.8684.2 | schema:alternateName | Institute of Digital Image Processing, JOANNEUM RESEARCH, Forschungsgesellschaft mbH, Wastiangasse 6, A-8010, Graz, Austria |
183 | ″ | schema:name | Institute of Digital Image Processing, JOANNEUM RESEARCH, Forschungsgesellschaft mbH, Wastiangasse 6, A-8010, Graz, Austria |
184 | ″ | rdf:type | schema:Organization |