Detecting Topology Preserving Feature Subset with SOM View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2004

AUTHORS

Arijit Laha

ABSTRACT

Kohonen’s Self-organizing Map (SOM) is one of the most popular neural network algorithms. SOM produces topology preserving map of the input data. In the current study the SOM’s topology preservation property is used to identify the input features whose removal does not affect significantly the neighborhood relations among the input data points. The topology preservation property of of an SOM is measured using a quantitative index. However the same index can be slightly modified to compute topology preservation in the SOM along individual features. Thus studying the topology preservation due to each individual feature we can compare their quality with respect to their importance in affecting the neighborhood relation among input points. Experimental study is conducted with a synthetic data set, well known Iris data set and a multi-channel satellite image dataset. The results are cross verified by comparing with Sammon error of the data computed in the corresponding dimension. k-NN classification performance is also considered for the data sets. More... »

PAGES

40-48

Book

TITLE

Intelligent Information Technology

ISBN

978-3-540-24126-3
978-3-540-30561-3

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-30561-3_5

DOI

http://dx.doi.org/10.1007/978-3-540-30561-3_5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1025870969


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute for Development and Research in Banking Technology", 
          "id": "https://www.grid.ac/institutes/grid.473631.4", 
          "name": [
            "Institute for Development and Research in Banking Technology, Castle Hills, 500 057, Hyderabad, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Laha", 
        "givenName": "Arijit", 
        "id": "sg:person.011633466625.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011633466625.33"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/a:1015240802059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029225180", 
          "https://doi.org/10.1023/a:1015240802059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-97610-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033174751", 
          "https://doi.org/10.1007/978-3-642-97610-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-97610-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033174751", 
          "https://doi.org/10.1007/978-3-642-97610-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00205972", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041604040", 
          "https://doi.org/10.1007/bf00205972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00205972", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041604040", 
          "https://doi.org/10.1007/bf00205972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/5.537105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061179608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/72.143371", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061218264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/72.557663", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061218866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/72.977291", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061219683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/t-c.1969.222678", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061455087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icnn.1988.23838", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086166493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/9789812811691_0002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088782081"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004", 
    "datePublishedReg": "2004-01-01", 
    "description": "Kohonen\u2019s Self-organizing Map (SOM) is one of the most popular neural network algorithms. SOM produces topology preserving map of the input data. In the current study the SOM\u2019s topology preservation property is used to identify the input features whose removal does not affect significantly the neighborhood relations among the input data points. The topology preservation property of of an SOM is measured using a quantitative index. However the same index can be slightly modified to compute topology preservation in the SOM along individual features. Thus studying the topology preservation due to each individual feature we can compare their quality with respect to their importance in affecting the neighborhood relation among input points. Experimental study is conducted with a synthetic data set, well known Iris data set and a multi-channel satellite image dataset. The results are cross verified by comparing with Sammon error of the data computed in the corresponding dimension. k-NN classification performance is also considered for the data sets.", 
    "editor": [
      {
        "familyName": "Das", 
        "givenName": "Gautam", 
        "type": "Person"
      }, 
      {
        "familyName": "Gulati", 
        "givenName": "Ved Prakash", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-30561-3_5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-24126-3", 
        "978-3-540-30561-3"
      ], 
      "name": "Intelligent Information Technology", 
      "type": "Book"
    }, 
    "name": "Detecting Topology Preserving Feature Subset with SOM", 
    "pagination": "40-48", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1025870969"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-30561-3_5"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7b4094237c4852021374244ebe468e1c63375260a06a96ae94569b1728cd70fa"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-30561-3_5", 
      "https://app.dimensions.ai/details/publication/pub.1025870969"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T08:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000359_0000000359/records_29207_00000001.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-540-30561-3_5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-30561-3_5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-30561-3_5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-30561-3_5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-30561-3_5'


 

This table displays all metadata directly associated to this object as RDF triples.

103 TRIPLES      23 PREDICATES      37 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-30561-3_5 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N58abf465c4914f92829d50be1de4dfae
4 schema:citation sg:pub.10.1007/978-3-642-97610-0
5 sg:pub.10.1007/bf00205972
6 sg:pub.10.1023/a:1015240802059
7 https://doi.org/10.1109/5.537105
8 https://doi.org/10.1109/72.143371
9 https://doi.org/10.1109/72.557663
10 https://doi.org/10.1109/72.977291
11 https://doi.org/10.1109/icnn.1988.23838
12 https://doi.org/10.1109/t-c.1969.222678
13 https://doi.org/10.1142/9789812811691_0002
14 schema:datePublished 2004
15 schema:datePublishedReg 2004-01-01
16 schema:description Kohonen’s Self-organizing Map (SOM) is one of the most popular neural network algorithms. SOM produces topology preserving map of the input data. In the current study the SOM’s topology preservation property is used to identify the input features whose removal does not affect significantly the neighborhood relations among the input data points. The topology preservation property of of an SOM is measured using a quantitative index. However the same index can be slightly modified to compute topology preservation in the SOM along individual features. Thus studying the topology preservation due to each individual feature we can compare their quality with respect to their importance in affecting the neighborhood relation among input points. Experimental study is conducted with a synthetic data set, well known Iris data set and a multi-channel satellite image dataset. The results are cross verified by comparing with Sammon error of the data computed in the corresponding dimension. k-NN classification performance is also considered for the data sets.
17 schema:editor Ndbf8a75e1f87481eba569c7669a3834a
18 schema:genre chapter
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf Na5dfcf9d259240cf8f14f418c7c29607
22 schema:name Detecting Topology Preserving Feature Subset with SOM
23 schema:pagination 40-48
24 schema:productId N1678c76b4b764220b9ea149c2b44d1ab
25 N87aaff5857f04338ab230fbb660968c8
26 Nb1849cde60ee40e484908e10e86406e3
27 schema:publisher N641f448ea7df4a4aa795e3c7e7fc7dd6
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025870969
29 https://doi.org/10.1007/978-3-540-30561-3_5
30 schema:sdDatePublished 2019-04-16T08:03
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher N39ed62995be14d9dae15d25f1ceea334
33 schema:url https://link.springer.com/10.1007%2F978-3-540-30561-3_5
34 sgo:license sg:explorer/license/
35 sgo:sdDataset chapters
36 rdf:type schema:Chapter
37 N1678c76b4b764220b9ea149c2b44d1ab schema:name readcube_id
38 schema:value 7b4094237c4852021374244ebe468e1c63375260a06a96ae94569b1728cd70fa
39 rdf:type schema:PropertyValue
40 N39ed62995be14d9dae15d25f1ceea334 schema:name Springer Nature - SN SciGraph project
41 rdf:type schema:Organization
42 N48bec318fa834af9b4f5ba3f5fc0dc29 schema:familyName Gulati
43 schema:givenName Ved Prakash
44 rdf:type schema:Person
45 N58abf465c4914f92829d50be1de4dfae rdf:first sg:person.011633466625.33
46 rdf:rest rdf:nil
47 N641f448ea7df4a4aa795e3c7e7fc7dd6 schema:location Berlin, Heidelberg
48 schema:name Springer Berlin Heidelberg
49 rdf:type schema:Organisation
50 N87aaff5857f04338ab230fbb660968c8 schema:name dimensions_id
51 schema:value pub.1025870969
52 rdf:type schema:PropertyValue
53 N88c60e5cf1b3440baa4937f3ad24b843 rdf:first N48bec318fa834af9b4f5ba3f5fc0dc29
54 rdf:rest rdf:nil
55 Na5dfcf9d259240cf8f14f418c7c29607 schema:isbn 978-3-540-24126-3
56 978-3-540-30561-3
57 schema:name Intelligent Information Technology
58 rdf:type schema:Book
59 Nb1849cde60ee40e484908e10e86406e3 schema:name doi
60 schema:value 10.1007/978-3-540-30561-3_5
61 rdf:type schema:PropertyValue
62 Nd1a63f36151a458c8312a59e18c1e791 schema:familyName Das
63 schema:givenName Gautam
64 rdf:type schema:Person
65 Ndbf8a75e1f87481eba569c7669a3834a rdf:first Nd1a63f36151a458c8312a59e18c1e791
66 rdf:rest N88c60e5cf1b3440baa4937f3ad24b843
67 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
68 schema:name Information and Computing Sciences
69 rdf:type schema:DefinedTerm
70 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
71 schema:name Artificial Intelligence and Image Processing
72 rdf:type schema:DefinedTerm
73 sg:person.011633466625.33 schema:affiliation https://www.grid.ac/institutes/grid.473631.4
74 schema:familyName Laha
75 schema:givenName Arijit
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011633466625.33
77 rdf:type schema:Person
78 sg:pub.10.1007/978-3-642-97610-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033174751
79 https://doi.org/10.1007/978-3-642-97610-0
80 rdf:type schema:CreativeWork
81 sg:pub.10.1007/bf00205972 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041604040
82 https://doi.org/10.1007/bf00205972
83 rdf:type schema:CreativeWork
84 sg:pub.10.1023/a:1015240802059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029225180
85 https://doi.org/10.1023/a:1015240802059
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1109/5.537105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061179608
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1109/72.143371 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061218264
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1109/72.557663 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061218866
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1109/72.977291 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061219683
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1109/icnn.1988.23838 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086166493
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1109/t-c.1969.222678 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061455087
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1142/9789812811691_0002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088782081
100 rdf:type schema:CreativeWork
101 https://www.grid.ac/institutes/grid.473631.4 schema:alternateName Institute for Development and Research in Banking Technology
102 schema:name Institute for Development and Research in Banking Technology, Castle Hills, 500 057, Hyderabad, India
103 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...