An Empirical Study on the Robustness of SOM in Preserving Topology with Respect to Link Density View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2004

AUTHORS

Arijit Laha

ABSTRACT

Practical implementations of SOM model require parallel and synchronous operation of the network during each iteration in the training stage. However this implicitly implies existence of some communication link between the winner neuron and all other neurons so that update can be induced to the neighboring neurons. In the current paper we report the results of an empirical study on the retention of topology preservation property of the SOM when such links become partially absent, so that during a training iteration not all the neighbors of the winner may be updated. We quantify our results using three different indexes for topology preservation. More... »

PAGES

142-149

Book

TITLE

Neural Information Processing

ISBN

978-3-540-23931-4
978-3-540-30499-9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-30499-9_21

DOI

http://dx.doi.org/10.1007/978-3-540-30499-9_21

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1042408978


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute for Development and Research in Banking Technology", 
          "id": "https://www.grid.ac/institutes/grid.473631.4", 
          "name": [
            "Institute for Development and Research in Banking Technology, Castle Hills, 500 057, Hyderabad, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Laha", 
        "givenName": "Arijit", 
        "id": "sg:person.011633466625.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011633466625.33"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-642-88163-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001197038", 
          "https://doi.org/10.1007/978-3-642-88163-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-88163-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001197038", 
          "https://doi.org/10.1007/978-3-642-88163-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00337288", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009635558", 
          "https://doi.org/10.1007/bf00337288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00337288", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009635558", 
          "https://doi.org/10.1007/bf00337288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.ne.10.030187.000353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022233860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1015240802059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029225180", 
          "https://doi.org/10.1023/a:1015240802059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/5.58325", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061179721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/72.143371", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061218264"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004", 
    "datePublishedReg": "2004-01-01", 
    "description": "Practical implementations of SOM model require parallel and synchronous operation of the network during each iteration in the training stage. However this implicitly implies existence of some communication link between the winner neuron and all other neurons so that update can be induced to the neighboring neurons. In the current paper we report the results of an empirical study on the retention of topology preservation property of the SOM when such links become partially absent, so that during a training iteration not all the neighbors of the winner may be updated. We quantify our results using three different indexes for topology preservation.", 
    "editor": [
      {
        "familyName": "Pal", 
        "givenName": "Nikhil Ranjan", 
        "type": "Person"
      }, 
      {
        "familyName": "Kasabov", 
        "givenName": "Nik", 
        "type": "Person"
      }, 
      {
        "familyName": "Mudi", 
        "givenName": "Rajani K.", 
        "type": "Person"
      }, 
      {
        "familyName": "Pal", 
        "givenName": "Srimanta", 
        "type": "Person"
      }, 
      {
        "familyName": "Parui", 
        "givenName": "Swapan Kumar", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-30499-9_21", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-23931-4", 
        "978-3-540-30499-9"
      ], 
      "name": "Neural Information Processing", 
      "type": "Book"
    }, 
    "name": "An Empirical Study on the Robustness of SOM in Preserving Topology with Respect to Link Density", 
    "pagination": "142-149", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1042408978"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-30499-9_21"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ca033d8a06587670fe5cb097cb9f3bda27324cc8bc2d04bc85c36c893f4d4485"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-30499-9_21", 
      "https://app.dimensions.ai/details/publication/pub.1042408978"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T07:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000359_0000000359/records_29183_00000002.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-540-30499-9_21"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-30499-9_21'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-30499-9_21'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-30499-9_21'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-30499-9_21'


 

This table displays all metadata directly associated to this object as RDF triples.

106 TRIPLES      23 PREDICATES      33 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-30499-9_21 schema:about anzsrc-for:11
2 anzsrc-for:1109
3 schema:author N0bba7d94495a459a83b2245b7f4cc49d
4 schema:citation sg:pub.10.1007/978-3-642-88163-3
5 sg:pub.10.1007/bf00337288
6 sg:pub.10.1023/a:1015240802059
7 https://doi.org/10.1109/5.58325
8 https://doi.org/10.1109/72.143371
9 https://doi.org/10.1146/annurev.ne.10.030187.000353
10 schema:datePublished 2004
11 schema:datePublishedReg 2004-01-01
12 schema:description Practical implementations of SOM model require parallel and synchronous operation of the network during each iteration in the training stage. However this implicitly implies existence of some communication link between the winner neuron and all other neurons so that update can be induced to the neighboring neurons. In the current paper we report the results of an empirical study on the retention of topology preservation property of the SOM when such links become partially absent, so that during a training iteration not all the neighbors of the winner may be updated. We quantify our results using three different indexes for topology preservation.
13 schema:editor N9a2638d65ab44e1ba0d1a6a4a0bd9e10
14 schema:genre chapter
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf N5bfdc8b4c79e4e52a38a0ed791dc602e
18 schema:name An Empirical Study on the Robustness of SOM in Preserving Topology with Respect to Link Density
19 schema:pagination 142-149
20 schema:productId N64a1498bb26d45238c2fe6541304a06f
21 N8e45c185909c41b8af5da12761ab386d
22 Nc36232107a6a425591a09a920c2922cf
23 schema:publisher N673b745437094b95895a2b4f3f7b7f51
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042408978
25 https://doi.org/10.1007/978-3-540-30499-9_21
26 schema:sdDatePublished 2019-04-16T07:59
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher N149e49c84cca4237b2933393bbd7bac1
29 schema:url https://link.springer.com/10.1007%2F978-3-540-30499-9_21
30 sgo:license sg:explorer/license/
31 sgo:sdDataset chapters
32 rdf:type schema:Chapter
33 N07dcbfe82dcd4a8bb3f24bfc1cda254e rdf:first N86efc31c7d8345a88a4bba5658204df2
34 rdf:rest N48454da99a404c9bb272b733ce65ac59
35 N0bba7d94495a459a83b2245b7f4cc49d rdf:first sg:person.011633466625.33
36 rdf:rest rdf:nil
37 N149e49c84cca4237b2933393bbd7bac1 schema:name Springer Nature - SN SciGraph project
38 rdf:type schema:Organization
39 N3d9b7e4001434337af506e8cb914234a schema:familyName Pal
40 schema:givenName Nikhil Ranjan
41 rdf:type schema:Person
42 N48454da99a404c9bb272b733ce65ac59 rdf:first N85fbc26a602643eb962cb4d3a86c7cf6
43 rdf:rest N8165c8cc80274518ab6d915f6ef92fd0
44 N553449973d03420498f717cfc39a8b27 schema:familyName Parui
45 schema:givenName Swapan Kumar
46 rdf:type schema:Person
47 N5bfdc8b4c79e4e52a38a0ed791dc602e schema:isbn 978-3-540-23931-4
48 978-3-540-30499-9
49 schema:name Neural Information Processing
50 rdf:type schema:Book
51 N64a1498bb26d45238c2fe6541304a06f schema:name doi
52 schema:value 10.1007/978-3-540-30499-9_21
53 rdf:type schema:PropertyValue
54 N673b745437094b95895a2b4f3f7b7f51 schema:location Berlin, Heidelberg
55 schema:name Springer Berlin Heidelberg
56 rdf:type schema:Organisation
57 N813f8a3b785842f68d855699c7000a6b rdf:first N553449973d03420498f717cfc39a8b27
58 rdf:rest rdf:nil
59 N8165c8cc80274518ab6d915f6ef92fd0 rdf:first Nad879bcd0f9e4a04b81318cd6673c218
60 rdf:rest N813f8a3b785842f68d855699c7000a6b
61 N85fbc26a602643eb962cb4d3a86c7cf6 schema:familyName Mudi
62 schema:givenName Rajani K.
63 rdf:type schema:Person
64 N86efc31c7d8345a88a4bba5658204df2 schema:familyName Kasabov
65 schema:givenName Nik
66 rdf:type schema:Person
67 N8e45c185909c41b8af5da12761ab386d schema:name dimensions_id
68 schema:value pub.1042408978
69 rdf:type schema:PropertyValue
70 N9a2638d65ab44e1ba0d1a6a4a0bd9e10 rdf:first N3d9b7e4001434337af506e8cb914234a
71 rdf:rest N07dcbfe82dcd4a8bb3f24bfc1cda254e
72 Nad879bcd0f9e4a04b81318cd6673c218 schema:familyName Pal
73 schema:givenName Srimanta
74 rdf:type schema:Person
75 Nc36232107a6a425591a09a920c2922cf schema:name readcube_id
76 schema:value ca033d8a06587670fe5cb097cb9f3bda27324cc8bc2d04bc85c36c893f4d4485
77 rdf:type schema:PropertyValue
78 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
79 schema:name Medical and Health Sciences
80 rdf:type schema:DefinedTerm
81 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
82 schema:name Neurosciences
83 rdf:type schema:DefinedTerm
84 sg:person.011633466625.33 schema:affiliation https://www.grid.ac/institutes/grid.473631.4
85 schema:familyName Laha
86 schema:givenName Arijit
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011633466625.33
88 rdf:type schema:Person
89 sg:pub.10.1007/978-3-642-88163-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001197038
90 https://doi.org/10.1007/978-3-642-88163-3
91 rdf:type schema:CreativeWork
92 sg:pub.10.1007/bf00337288 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009635558
93 https://doi.org/10.1007/bf00337288
94 rdf:type schema:CreativeWork
95 sg:pub.10.1023/a:1015240802059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029225180
96 https://doi.org/10.1023/a:1015240802059
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1109/5.58325 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061179721
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1109/72.143371 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061218264
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1146/annurev.ne.10.030187.000353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022233860
103 rdf:type schema:CreativeWork
104 https://www.grid.ac/institutes/grid.473631.4 schema:alternateName Institute for Development and Research in Banking Technology
105 schema:name Institute for Development and Research in Banking Technology, Castle Hills, 500 057, Hyderabad, India
106 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...