Determining the Number of Probability-Based Clustering: A Hybrid Approach View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2004

AUTHORS

Tao Dai , Chunping Li , Jiaguang Sun

ABSTRACT

While analyzing the previous methods for determining the number of probability-based clustering, this paper introduces an improved Monte Carlo Cross-Validation algorithm (iMCCV) and attempts to solve the posterior probabilities spread problem, which cannot be resolved by the Monte Carlo Cross-Validation algorithm. Furthermore, we present a hybrid approach to determine the number of probability-based clustering by combining the iMCCV algorithm and the parallel coordinates visual technology. The efficiency of our approach is discussed with experimental results. More... »

PAGES

416-421

Book

TITLE

Content Computing

ISBN

978-3-540-23898-0
978-3-540-30483-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-30483-8_51

DOI

http://dx.doi.org/10.1007/978-3-540-30483-8_51

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047784608


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Economics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1402", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Economics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Software, Tsinghua University, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "School of Software, Tsinghua University, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dai", 
        "givenName": "Tao", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Software, Tsinghua University, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "School of Software, Tsinghua University, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Chunping", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Software, Tsinghua University, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "School of Software, Tsinghua University, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sun", 
        "givenName": "Jiaguang", 
        "id": "sg:person.011411464635.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011411464635.59"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2004", 
    "datePublishedReg": "2004-01-01", 
    "description": "While analyzing the previous methods for determining the number of probability-based clustering, this paper introduces an improved Monte Carlo Cross-Validation algorithm (iMCCV) and attempts to solve the posterior probabilities spread problem, which cannot be resolved by the Monte Carlo Cross-Validation algorithm. Furthermore, we present a hybrid approach to determine the number of probability-based clustering by combining the iMCCV algorithm and the parallel coordinates visual technology. The efficiency of our approach is discussed with experimental results.", 
    "editor": [
      {
        "familyName": "Chi", 
        "givenName": "Chi-Hung", 
        "type": "Person"
      }, 
      {
        "familyName": "Lam", 
        "givenName": "Kwok-Yan", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-30483-8_51", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-23898-0", 
        "978-3-540-30483-8"
      ], 
      "name": "Content Computing", 
      "type": "Book"
    }, 
    "keywords": [
      "cross-validation algorithm", 
      "hybrid approach", 
      "number of probabilities", 
      "algorithm", 
      "previous methods", 
      "clustering", 
      "spread problem", 
      "approach", 
      "problem", 
      "probability", 
      "number", 
      "experimental results", 
      "efficiency", 
      "results", 
      "technology", 
      "visual technologies", 
      "method", 
      "paper", 
      "probability-based clustering", 
      "improved Monte Carlo Cross-Validation algorithm", 
      "Monte Carlo Cross-Validation algorithm", 
      "Carlo Cross-Validation algorithm", 
      "posterior probabilities spread problem", 
      "probabilities spread problem", 
      "iMCCV algorithm"
    ], 
    "name": "Determining the Number of Probability-Based Clustering: A Hybrid Approach", 
    "pagination": "416-421", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047784608"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-30483-8_51"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-30483-8_51", 
      "https://app.dimensions.ai/details/publication/pub.1047784608"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_377.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-540-30483-8_51"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-30483-8_51'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-30483-8_51'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-30483-8_51'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-30483-8_51'


 

This table displays all metadata directly associated to this object as RDF triples.

102 TRIPLES      23 PREDICATES      51 URIs      44 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-30483-8_51 schema:about anzsrc-for:14
2 anzsrc-for:1402
3 schema:author N6b39e22f2e574ddab52fa5809935a903
4 schema:datePublished 2004
5 schema:datePublishedReg 2004-01-01
6 schema:description While analyzing the previous methods for determining the number of probability-based clustering, this paper introduces an improved Monte Carlo Cross-Validation algorithm (iMCCV) and attempts to solve the posterior probabilities spread problem, which cannot be resolved by the Monte Carlo Cross-Validation algorithm. Furthermore, we present a hybrid approach to determine the number of probability-based clustering by combining the iMCCV algorithm and the parallel coordinates visual technology. The efficiency of our approach is discussed with experimental results.
7 schema:editor Nbdf00222b8f34749960b285dd4393011
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N90dcf3de2622446b899cb978a158cb36
12 schema:keywords Carlo Cross-Validation algorithm
13 Monte Carlo Cross-Validation algorithm
14 algorithm
15 approach
16 clustering
17 cross-validation algorithm
18 efficiency
19 experimental results
20 hybrid approach
21 iMCCV algorithm
22 improved Monte Carlo Cross-Validation algorithm
23 method
24 number
25 number of probabilities
26 paper
27 posterior probabilities spread problem
28 previous methods
29 probabilities spread problem
30 probability
31 probability-based clustering
32 problem
33 results
34 spread problem
35 technology
36 visual technologies
37 schema:name Determining the Number of Probability-Based Clustering: A Hybrid Approach
38 schema:pagination 416-421
39 schema:productId N4891609ded7143898df8340cfb31c633
40 N49d8dce4c9e1426b8f747d28895b28fd
41 schema:publisher N35265f6948de4113b3dd0205bea4bafa
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047784608
43 https://doi.org/10.1007/978-3-540-30483-8_51
44 schema:sdDatePublished 2022-01-01T19:21
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher N5767275f0ba34645a6ef64cca10c3733
47 schema:url https://doi.org/10.1007/978-3-540-30483-8_51
48 sgo:license sg:explorer/license/
49 sgo:sdDataset chapters
50 rdf:type schema:Chapter
51 N10a593ac3f2a40b5b619ae6bb69ddf28 schema:familyName Chi
52 schema:givenName Chi-Hung
53 rdf:type schema:Person
54 N14fa3318741b4a90b204abe46c3fd56a schema:familyName Lam
55 schema:givenName Kwok-Yan
56 rdf:type schema:Person
57 N35265f6948de4113b3dd0205bea4bafa schema:name Springer Nature
58 rdf:type schema:Organisation
59 N4891609ded7143898df8340cfb31c633 schema:name doi
60 schema:value 10.1007/978-3-540-30483-8_51
61 rdf:type schema:PropertyValue
62 N49d8dce4c9e1426b8f747d28895b28fd schema:name dimensions_id
63 schema:value pub.1047784608
64 rdf:type schema:PropertyValue
65 N5767275f0ba34645a6ef64cca10c3733 schema:name Springer Nature - SN SciGraph project
66 rdf:type schema:Organization
67 N6b39e22f2e574ddab52fa5809935a903 rdf:first Nd3a6b01a283e4e479ff36d9b2a2fb71e
68 rdf:rest Ne22a838fb0544292bdca12341b27dc59
69 N79544e5d4bfc4d4491a36a1dc9b4cd9f rdf:first N14fa3318741b4a90b204abe46c3fd56a
70 rdf:rest rdf:nil
71 N90dcf3de2622446b899cb978a158cb36 schema:isbn 978-3-540-23898-0
72 978-3-540-30483-8
73 schema:name Content Computing
74 rdf:type schema:Book
75 Nba14d9b282624c36ab28b606d3f07e67 schema:affiliation grid-institutes:grid.12527.33
76 schema:familyName Li
77 schema:givenName Chunping
78 rdf:type schema:Person
79 Nbdf00222b8f34749960b285dd4393011 rdf:first N10a593ac3f2a40b5b619ae6bb69ddf28
80 rdf:rest N79544e5d4bfc4d4491a36a1dc9b4cd9f
81 Nd3a6b01a283e4e479ff36d9b2a2fb71e schema:affiliation grid-institutes:grid.12527.33
82 schema:familyName Dai
83 schema:givenName Tao
84 rdf:type schema:Person
85 Ne22a838fb0544292bdca12341b27dc59 rdf:first Nba14d9b282624c36ab28b606d3f07e67
86 rdf:rest Ne946aac2f16547949b5656a5772167c5
87 Ne946aac2f16547949b5656a5772167c5 rdf:first sg:person.011411464635.59
88 rdf:rest rdf:nil
89 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
90 schema:name Economics
91 rdf:type schema:DefinedTerm
92 anzsrc-for:1402 schema:inDefinedTermSet anzsrc-for:
93 schema:name Applied Economics
94 rdf:type schema:DefinedTerm
95 sg:person.011411464635.59 schema:affiliation grid-institutes:grid.12527.33
96 schema:familyName Sun
97 schema:givenName Jiaguang
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011411464635.59
99 rdf:type schema:Person
100 grid-institutes:grid.12527.33 schema:alternateName School of Software, Tsinghua University, Beijing, China
101 schema:name School of Software, Tsinghua University, Beijing, China
102 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...