Hybrid Techniques for Pedestrian Simulations View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2004

AUTHORS

Christian Gloor , Pascal Stucki , Kai Nagel

ABSTRACT

There is considerable interest in the simulation of systems where humans move around, for example for traffic or pedestrian simulations. Multiple models for pedestrian simulations exist: cell based models are easy to understand, fast, but consume a lot of memory once the scenario becomes larger; models based on continuous space, which are more economical with memory usage, however, use significantly more CPU cycles. In our project “Planning with Virtual Alpine Landscapes and Autonomous Agents”, we simulate an area of 150 square kilometers, with more than thousand agents for one week. Every agent is able to move freely, adapt to the environment and make decisions during run time. This decisions are based on perception and communication with other agents. This implies a simulation model that is fast and still fits into main memory of a typical workstation. We combined the advantages of both approaches into a hybrid model. This model exploits some of the special properties of the area. This paper introduces this hybrid system, and presents performance results measured in a real-world example. More... »

PAGES

581-590

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-30479-1_60

DOI

http://dx.doi.org/10.1007/978-3-540-30479-1_60

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1049520196


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Swiss Federal Institute of Technology in Zurich", 
          "id": "https://www.grid.ac/institutes/grid.5801.c", 
          "name": [
            "Institute of Computational Science, Swiss Federal Institute of Technology Z\u00fcrich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gloor", 
        "givenName": "Christian", 
        "id": "sg:person.012475725005.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012475725005.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Swiss Federal Institute of Technology in Zurich", 
          "id": "https://www.grid.ac/institutes/grid.5801.c", 
          "name": [
            "Institute of Computational Science, Swiss Federal Institute of Technology Z\u00fcrich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stucki", 
        "givenName": "Pascal", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University of Berlin", 
          "id": "https://www.grid.ac/institutes/grid.6734.6", 
          "name": [
            "Transport Systems Planning and Transport Telematics, Technical University Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nagel", 
        "givenName": "Kai", 
        "id": "sg:person.010377034075.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010377034075.17"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/35035023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017951524", 
          "https://doi.org/10.1038/35035023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35035023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017951524", 
          "https://doi.org/10.1038/35035023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01386390", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041716633", 
          "https://doi.org/10.1007/bf01386390"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004", 
    "datePublishedReg": "2004-01-01", 
    "description": "There is considerable interest in the simulation of systems where humans move around, for example for traffic or pedestrian simulations. Multiple models for pedestrian simulations exist: cell based models are easy to understand, fast, but consume a lot of memory once the scenario becomes larger; models based on continuous space, which are more economical with memory usage, however, use significantly more CPU cycles. In our project \u201cPlanning with Virtual Alpine Landscapes and Autonomous Agents\u201d, we simulate an area of 150 square kilometers, with more than thousand agents for one week. Every agent is able to move freely, adapt to the environment and make decisions during run time. This decisions are based on perception and communication with other agents. This implies a simulation model that is fast and still fits into main memory of a typical workstation. We combined the advantages of both approaches into a hybrid model. This model exploits some of the special properties of the area. This paper introduces this hybrid system, and presents performance results measured in a real-world example.", 
    "editor": [
      {
        "familyName": "Sloot", 
        "givenName": "Peter M. A.", 
        "type": "Person"
      }, 
      {
        "familyName": "Chopard", 
        "givenName": "Bastien", 
        "type": "Person"
      }, 
      {
        "familyName": "Hoekstra", 
        "givenName": "Alfons G.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-30479-1_60", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-23596-5", 
        "978-3-540-30479-1"
      ], 
      "name": "Cellular Automata", 
      "type": "Book"
    }, 
    "name": "Hybrid Techniques for Pedestrian Simulations", 
    "pagination": "581-590", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1049520196"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-30479-1_60"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ebe6cf0a10336533769efd6a1ca5b81e06477f434a3b9b8c35f04367b88a93c7"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-30479-1_60", 
      "https://app.dimensions.ai/details/publication/pub.1049520196"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T08:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000359_0000000359/records_29215_00000002.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-540-30479-1_60"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-30479-1_60'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-30479-1_60'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-30479-1_60'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-30479-1_60'


 

This table displays all metadata directly associated to this object as RDF triples.

99 TRIPLES      23 PREDICATES      29 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-30479-1_60 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nbe06495a56b246699bc7997e2d81a78b
4 schema:citation sg:pub.10.1007/bf01386390
5 sg:pub.10.1038/35035023
6 schema:datePublished 2004
7 schema:datePublishedReg 2004-01-01
8 schema:description There is considerable interest in the simulation of systems where humans move around, for example for traffic or pedestrian simulations. Multiple models for pedestrian simulations exist: cell based models are easy to understand, fast, but consume a lot of memory once the scenario becomes larger; models based on continuous space, which are more economical with memory usage, however, use significantly more CPU cycles. In our project “Planning with Virtual Alpine Landscapes and Autonomous Agents”, we simulate an area of 150 square kilometers, with more than thousand agents for one week. Every agent is able to move freely, adapt to the environment and make decisions during run time. This decisions are based on perception and communication with other agents. This implies a simulation model that is fast and still fits into main memory of a typical workstation. We combined the advantages of both approaches into a hybrid model. This model exploits some of the special properties of the area. This paper introduces this hybrid system, and presents performance results measured in a real-world example.
9 schema:editor N616d43b67bb44c019319e5b950395089
10 schema:genre chapter
11 schema:inLanguage en
12 schema:isAccessibleForFree true
13 schema:isPartOf Nccecca2e9f51469393183d12c7d3cdf6
14 schema:name Hybrid Techniques for Pedestrian Simulations
15 schema:pagination 581-590
16 schema:productId N25cee522c26245d6bcdb23b259c1831e
17 N9030c9e4712d4eb7a0b1cfd870dca982
18 Nf0a9f76389954c1394576911443774a2
19 schema:publisher Nc8bd18e58ae4467e8662bd8d903157e6
20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049520196
21 https://doi.org/10.1007/978-3-540-30479-1_60
22 schema:sdDatePublished 2019-04-16T08:04
23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
24 schema:sdPublisher Ne63b8f14781b452e98d320e21ed41b61
25 schema:url https://link.springer.com/10.1007%2F978-3-540-30479-1_60
26 sgo:license sg:explorer/license/
27 sgo:sdDataset chapters
28 rdf:type schema:Chapter
29 N066e1a82dad54feb94747779b776588d rdf:first Nf8b161f27c4e4e3ba578947fe29390c1
30 rdf:rest rdf:nil
31 N25cee522c26245d6bcdb23b259c1831e schema:name doi
32 schema:value 10.1007/978-3-540-30479-1_60
33 rdf:type schema:PropertyValue
34 N394e5285fc9245d2bc7296e9b2e342d4 schema:familyName Sloot
35 schema:givenName Peter M. A.
36 rdf:type schema:Person
37 N5eebf251daed4e5ebf6ed9dcae220c5f rdf:first Nc863ca60d5e6412695aecba2f35baef3
38 rdf:rest N066e1a82dad54feb94747779b776588d
39 N616d43b67bb44c019319e5b950395089 rdf:first N394e5285fc9245d2bc7296e9b2e342d4
40 rdf:rest N5eebf251daed4e5ebf6ed9dcae220c5f
41 N84feae057e594ae09e02c6fb9fb6781c schema:affiliation https://www.grid.ac/institutes/grid.5801.c
42 schema:familyName Stucki
43 schema:givenName Pascal
44 rdf:type schema:Person
45 N9030c9e4712d4eb7a0b1cfd870dca982 schema:name dimensions_id
46 schema:value pub.1049520196
47 rdf:type schema:PropertyValue
48 Naf8ae5de550c4892b177f2f51cdca8e3 rdf:first N84feae057e594ae09e02c6fb9fb6781c
49 rdf:rest Nd6fe863250d141689256ed8462c94111
50 Nbe06495a56b246699bc7997e2d81a78b rdf:first sg:person.012475725005.49
51 rdf:rest Naf8ae5de550c4892b177f2f51cdca8e3
52 Nc863ca60d5e6412695aecba2f35baef3 schema:familyName Chopard
53 schema:givenName Bastien
54 rdf:type schema:Person
55 Nc8bd18e58ae4467e8662bd8d903157e6 schema:location Berlin, Heidelberg
56 schema:name Springer Berlin Heidelberg
57 rdf:type schema:Organisation
58 Nccecca2e9f51469393183d12c7d3cdf6 schema:isbn 978-3-540-23596-5
59 978-3-540-30479-1
60 schema:name Cellular Automata
61 rdf:type schema:Book
62 Nd6fe863250d141689256ed8462c94111 rdf:first sg:person.010377034075.17
63 rdf:rest rdf:nil
64 Ne63b8f14781b452e98d320e21ed41b61 schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 Nf0a9f76389954c1394576911443774a2 schema:name readcube_id
67 schema:value ebe6cf0a10336533769efd6a1ca5b81e06477f434a3b9b8c35f04367b88a93c7
68 rdf:type schema:PropertyValue
69 Nf8b161f27c4e4e3ba578947fe29390c1 schema:familyName Hoekstra
70 schema:givenName Alfons G.
71 rdf:type schema:Person
72 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
73 schema:name Information and Computing Sciences
74 rdf:type schema:DefinedTerm
75 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
76 schema:name Artificial Intelligence and Image Processing
77 rdf:type schema:DefinedTerm
78 sg:person.010377034075.17 schema:affiliation https://www.grid.ac/institutes/grid.6734.6
79 schema:familyName Nagel
80 schema:givenName Kai
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010377034075.17
82 rdf:type schema:Person
83 sg:person.012475725005.49 schema:affiliation https://www.grid.ac/institutes/grid.5801.c
84 schema:familyName Gloor
85 schema:givenName Christian
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012475725005.49
87 rdf:type schema:Person
88 sg:pub.10.1007/bf01386390 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041716633
89 https://doi.org/10.1007/bf01386390
90 rdf:type schema:CreativeWork
91 sg:pub.10.1038/35035023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017951524
92 https://doi.org/10.1038/35035023
93 rdf:type schema:CreativeWork
94 https://www.grid.ac/institutes/grid.5801.c schema:alternateName Swiss Federal Institute of Technology in Zurich
95 schema:name Institute of Computational Science, Swiss Federal Institute of Technology Zürich, Switzerland
96 rdf:type schema:Organization
97 https://www.grid.ac/institutes/grid.6734.6 schema:alternateName Technical University of Berlin
98 schema:name Transport Systems Planning and Transport Telematics, Technical University Berlin, Germany
99 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...