Hybrid Techniques for Pedestrian Simulations View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2004

AUTHORS

Christian Gloor , Pascal Stucki , Kai Nagel

ABSTRACT

There is considerable interest in the simulation of systems where humans move around, for example for traffic or pedestrian simulations. Multiple models for pedestrian simulations exist: cell based models are easy to understand, fast, but consume a lot of memory once the scenario becomes larger; models based on continuous space, which are more economical with memory usage, however, use significantly more CPU cycles. In our project “Planning with Virtual Alpine Landscapes and Autonomous Agents”, we simulate an area of 150 square kilometers, with more than thousand agents for one week. Every agent is able to move freely, adapt to the environment and make decisions during run time. This decisions are based on perception and communication with other agents. This implies a simulation model that is fast and still fits into main memory of a typical workstation. We combined the advantages of both approaches into a hybrid model. This model exploits some of the special properties of the area. This paper introduces this hybrid system, and presents performance results measured in a real-world example. More... »

PAGES

581-590

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-30479-1_60

DOI

http://dx.doi.org/10.1007/978-3-540-30479-1_60

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1049520196


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Swiss Federal Institute of Technology in Zurich", 
          "id": "https://www.grid.ac/institutes/grid.5801.c", 
          "name": [
            "Institute of Computational Science, Swiss Federal Institute of Technology Z\u00fcrich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gloor", 
        "givenName": "Christian", 
        "id": "sg:person.012475725005.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012475725005.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Swiss Federal Institute of Technology in Zurich", 
          "id": "https://www.grid.ac/institutes/grid.5801.c", 
          "name": [
            "Institute of Computational Science, Swiss Federal Institute of Technology Z\u00fcrich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stucki", 
        "givenName": "Pascal", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University of Berlin", 
          "id": "https://www.grid.ac/institutes/grid.6734.6", 
          "name": [
            "Transport Systems Planning and Transport Telematics, Technical University Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nagel", 
        "givenName": "Kai", 
        "id": "sg:person.010377034075.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010377034075.17"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/35035023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017951524", 
          "https://doi.org/10.1038/35035023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35035023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017951524", 
          "https://doi.org/10.1038/35035023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01386390", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041716633", 
          "https://doi.org/10.1007/bf01386390"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004", 
    "datePublishedReg": "2004-01-01", 
    "description": "There is considerable interest in the simulation of systems where humans move around, for example for traffic or pedestrian simulations. Multiple models for pedestrian simulations exist: cell based models are easy to understand, fast, but consume a lot of memory once the scenario becomes larger; models based on continuous space, which are more economical with memory usage, however, use significantly more CPU cycles. In our project \u201cPlanning with Virtual Alpine Landscapes and Autonomous Agents\u201d, we simulate an area of 150 square kilometers, with more than thousand agents for one week. Every agent is able to move freely, adapt to the environment and make decisions during run time. This decisions are based on perception and communication with other agents. This implies a simulation model that is fast and still fits into main memory of a typical workstation. We combined the advantages of both approaches into a hybrid model. This model exploits some of the special properties of the area. This paper introduces this hybrid system, and presents performance results measured in a real-world example.", 
    "editor": [
      {
        "familyName": "Sloot", 
        "givenName": "Peter M. A.", 
        "type": "Person"
      }, 
      {
        "familyName": "Chopard", 
        "givenName": "Bastien", 
        "type": "Person"
      }, 
      {
        "familyName": "Hoekstra", 
        "givenName": "Alfons G.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-30479-1_60", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-23596-5", 
        "978-3-540-30479-1"
      ], 
      "name": "Cellular Automata", 
      "type": "Book"
    }, 
    "name": "Hybrid Techniques for Pedestrian Simulations", 
    "pagination": "581-590", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1049520196"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-30479-1_60"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ebe6cf0a10336533769efd6a1ca5b81e06477f434a3b9b8c35f04367b88a93c7"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-30479-1_60", 
      "https://app.dimensions.ai/details/publication/pub.1049520196"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T08:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000359_0000000359/records_29215_00000002.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-540-30479-1_60"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-30479-1_60'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-30479-1_60'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-30479-1_60'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-30479-1_60'


 

This table displays all metadata directly associated to this object as RDF triples.

99 TRIPLES      23 PREDICATES      29 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-30479-1_60 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N0d68823d8fff488b83c10f41dcf34f6b
4 schema:citation sg:pub.10.1007/bf01386390
5 sg:pub.10.1038/35035023
6 schema:datePublished 2004
7 schema:datePublishedReg 2004-01-01
8 schema:description There is considerable interest in the simulation of systems where humans move around, for example for traffic or pedestrian simulations. Multiple models for pedestrian simulations exist: cell based models are easy to understand, fast, but consume a lot of memory once the scenario becomes larger; models based on continuous space, which are more economical with memory usage, however, use significantly more CPU cycles. In our project “Planning with Virtual Alpine Landscapes and Autonomous Agents”, we simulate an area of 150 square kilometers, with more than thousand agents for one week. Every agent is able to move freely, adapt to the environment and make decisions during run time. This decisions are based on perception and communication with other agents. This implies a simulation model that is fast and still fits into main memory of a typical workstation. We combined the advantages of both approaches into a hybrid model. This model exploits some of the special properties of the area. This paper introduces this hybrid system, and presents performance results measured in a real-world example.
9 schema:editor Nb2acdcdbbc0f4cf299811f04a17c2beb
10 schema:genre chapter
11 schema:inLanguage en
12 schema:isAccessibleForFree true
13 schema:isPartOf N7e8a66ccb9334c80b91ebb80abc6601a
14 schema:name Hybrid Techniques for Pedestrian Simulations
15 schema:pagination 581-590
16 schema:productId N03b2634cb71646968230dea1e99b4893
17 Ne36050e22eaf4c30900128596732568d
18 Nfa0207ee967a43eea0fb4603a5f27e09
19 schema:publisher N2ab42639129044ed91b7183e2bbe5905
20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049520196
21 https://doi.org/10.1007/978-3-540-30479-1_60
22 schema:sdDatePublished 2019-04-16T08:04
23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
24 schema:sdPublisher N7968891c45c44975b7cd8f1940f98cd6
25 schema:url https://link.springer.com/10.1007%2F978-3-540-30479-1_60
26 sgo:license sg:explorer/license/
27 sgo:sdDataset chapters
28 rdf:type schema:Chapter
29 N03b2634cb71646968230dea1e99b4893 schema:name readcube_id
30 schema:value ebe6cf0a10336533769efd6a1ca5b81e06477f434a3b9b8c35f04367b88a93c7
31 rdf:type schema:PropertyValue
32 N0a5662d6244d452e9dddbec4e111e7bc rdf:first Na58af4044fa6424ba6e1d5ca2ca9a31e
33 rdf:rest rdf:nil
34 N0d68823d8fff488b83c10f41dcf34f6b rdf:first sg:person.012475725005.49
35 rdf:rest N5f30fdbabd5e4aa19650faaa352c0ecc
36 N2ab42639129044ed91b7183e2bbe5905 schema:location Berlin, Heidelberg
37 schema:name Springer Berlin Heidelberg
38 rdf:type schema:Organisation
39 N5084b8f902cb4975a28abfd2d3f24028 rdf:first N96f5ee90908a426f8631184829898092
40 rdf:rest N0a5662d6244d452e9dddbec4e111e7bc
41 N5f30fdbabd5e4aa19650faaa352c0ecc rdf:first Nce61e750d66a4dedb79f636ad07f4d52
42 rdf:rest Nb05270aa719c4319acec4abce8e5d115
43 N640545dd7e054ab0a78130618cea99f9 schema:familyName Sloot
44 schema:givenName Peter M. A.
45 rdf:type schema:Person
46 N7968891c45c44975b7cd8f1940f98cd6 schema:name Springer Nature - SN SciGraph project
47 rdf:type schema:Organization
48 N7e8a66ccb9334c80b91ebb80abc6601a schema:isbn 978-3-540-23596-5
49 978-3-540-30479-1
50 schema:name Cellular Automata
51 rdf:type schema:Book
52 N96f5ee90908a426f8631184829898092 schema:familyName Chopard
53 schema:givenName Bastien
54 rdf:type schema:Person
55 Na58af4044fa6424ba6e1d5ca2ca9a31e schema:familyName Hoekstra
56 schema:givenName Alfons G.
57 rdf:type schema:Person
58 Nb05270aa719c4319acec4abce8e5d115 rdf:first sg:person.010377034075.17
59 rdf:rest rdf:nil
60 Nb2acdcdbbc0f4cf299811f04a17c2beb rdf:first N640545dd7e054ab0a78130618cea99f9
61 rdf:rest N5084b8f902cb4975a28abfd2d3f24028
62 Nce61e750d66a4dedb79f636ad07f4d52 schema:affiliation https://www.grid.ac/institutes/grid.5801.c
63 schema:familyName Stucki
64 schema:givenName Pascal
65 rdf:type schema:Person
66 Ne36050e22eaf4c30900128596732568d schema:name dimensions_id
67 schema:value pub.1049520196
68 rdf:type schema:PropertyValue
69 Nfa0207ee967a43eea0fb4603a5f27e09 schema:name doi
70 schema:value 10.1007/978-3-540-30479-1_60
71 rdf:type schema:PropertyValue
72 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
73 schema:name Information and Computing Sciences
74 rdf:type schema:DefinedTerm
75 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
76 schema:name Artificial Intelligence and Image Processing
77 rdf:type schema:DefinedTerm
78 sg:person.010377034075.17 schema:affiliation https://www.grid.ac/institutes/grid.6734.6
79 schema:familyName Nagel
80 schema:givenName Kai
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010377034075.17
82 rdf:type schema:Person
83 sg:person.012475725005.49 schema:affiliation https://www.grid.ac/institutes/grid.5801.c
84 schema:familyName Gloor
85 schema:givenName Christian
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012475725005.49
87 rdf:type schema:Person
88 sg:pub.10.1007/bf01386390 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041716633
89 https://doi.org/10.1007/bf01386390
90 rdf:type schema:CreativeWork
91 sg:pub.10.1038/35035023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017951524
92 https://doi.org/10.1038/35035023
93 rdf:type schema:CreativeWork
94 https://www.grid.ac/institutes/grid.5801.c schema:alternateName Swiss Federal Institute of Technology in Zurich
95 schema:name Institute of Computational Science, Swiss Federal Institute of Technology Zürich, Switzerland
96 rdf:type schema:Organization
97 https://www.grid.ac/institutes/grid.6734.6 schema:alternateName Technical University of Berlin
98 schema:name Transport Systems Planning and Transport Telematics, Technical University Berlin, Germany
99 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...