Symbolization of Mobile Object Trajectories with the Support to Motion Data Mining View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2004

AUTHORS

Xiaoming Jin , Jianmin Wang , Jiaguang Sun

ABSTRACT

Extraction and representation of the events in trajectory data enable us go beyond the primitive and quantitative values and focus on the high level knowledge. On the other hand, it enables the applications of vast off the shelf methods, which was originally designed for mining event sequences, to trajectory data. In this paper, the problem of symbolizing trajectory data is addressed. We first introduce a static symbolization method, in which typical sub-trajectories are generated automatically based on the data. For facilitating the data mining process on streaming trajectories, we also present an incremental method, which dynamically adjusts the typical sub-trajectories according to the most recent data characters. The performances of our approaches were evaluated on both real data and synthetic data. Experimental results justify the effectiveness of the proposed methods and the superiority of the incremental approach. More... »

PAGES

103-113

Book

TITLE

Conceptual Modeling for Advanced Application Domains

ISBN

978-3-540-23722-8
978-3-540-30466-1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-30466-1_10

DOI

http://dx.doi.org/10.1007/978-3-540-30466-1_10

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007336360


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Software, Tsinghua University, 100084, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "School of Software, Tsinghua University, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jin", 
        "givenName": "Xiaoming", 
        "id": "sg:person.013105226367.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013105226367.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Software, Tsinghua University, 100084, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "School of Software, Tsinghua University, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Jianmin", 
        "id": "sg:person.012303351315.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012303351315.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Software, Tsinghua University, 100084, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "School of Software, Tsinghua University, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sun", 
        "givenName": "Jiaguang", 
        "id": "sg:person.011411464635.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011411464635.59"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2004", 
    "datePublishedReg": "2004-01-01", 
    "description": "Extraction and representation of the events in trajectory data enable us go beyond the primitive and quantitative values and focus on the high level knowledge. On the other hand, it enables the applications of vast off the shelf methods, which was originally designed for mining event sequences, to trajectory data. In this paper, the problem of symbolizing trajectory data is addressed. We first introduce a static symbolization method, in which typical sub-trajectories are generated automatically based on the data. For facilitating the data mining process on streaming trajectories, we also present an incremental method, which dynamically adjusts the typical sub-trajectories according to the most recent data characters. The performances of our approaches were evaluated on both real data and synthetic data. Experimental results justify the effectiveness of the proposed methods and the superiority of the incremental approach.", 
    "editor": [
      {
        "familyName": "Wang", 
        "givenName": "Shan", 
        "type": "Person"
      }, 
      {
        "familyName": "Tanaka", 
        "givenName": "Katsumi", 
        "type": "Person"
      }, 
      {
        "familyName": "Zhou", 
        "givenName": "Shuigeng", 
        "type": "Person"
      }, 
      {
        "familyName": "Ling", 
        "givenName": "Tok-Wang", 
        "type": "Person"
      }, 
      {
        "familyName": "Guan", 
        "givenName": "Jihong", 
        "type": "Person"
      }, 
      {
        "familyName": "Yang", 
        "givenName": "Dong-qing", 
        "type": "Person"
      }, 
      {
        "familyName": "Grandi", 
        "givenName": "Fabio", 
        "type": "Person"
      }, 
      {
        "familyName": "Mangina", 
        "givenName": "Eleni E.", 
        "type": "Person"
      }, 
      {
        "familyName": "Song", 
        "givenName": "Il-Yeol", 
        "type": "Person"
      }, 
      {
        "familyName": "Mayr", 
        "givenName": "Heinrich C.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-30466-1_10", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-23722-8", 
        "978-3-540-30466-1"
      ], 
      "name": "Conceptual Modeling for Advanced Application Domains", 
      "type": "Book"
    }, 
    "keywords": [
      "trajectory data", 
      "data mining process", 
      "motion data mining", 
      "mobile object trajectories", 
      "high level knowledge", 
      "data mining", 
      "object trajectories", 
      "mining process", 
      "data character", 
      "incremental approach", 
      "symbolization method", 
      "event sequences", 
      "level knowledge", 
      "shelf methods", 
      "synthetic data", 
      "real data", 
      "incremental method", 
      "experimental results", 
      "mining", 
      "trajectories", 
      "method", 
      "representation", 
      "superiority", 
      "data", 
      "quantitative values", 
      "applications", 
      "performance", 
      "effectiveness", 
      "extraction", 
      "knowledge", 
      "support", 
      "symbolization", 
      "process", 
      "hand", 
      "sequence", 
      "results", 
      "events", 
      "character", 
      "values", 
      "approach", 
      "paper", 
      "problem", 
      "mining event sequences", 
      "static symbolization method", 
      "recent data characters"
    ], 
    "name": "Symbolization of Mobile Object Trajectories with the Support to Motion Data Mining", 
    "pagination": "103-113", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007336360"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-30466-1_10"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-30466-1_10", 
      "https://app.dimensions.ai/details/publication/pub.1007336360"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_395.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-540-30466-1_10"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-30466-1_10'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-30466-1_10'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-30466-1_10'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-30466-1_10'


 

This table displays all metadata directly associated to this object as RDF triples.

168 TRIPLES      23 PREDICATES      72 URIs      64 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-30466-1_10 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 anzsrc-for:0806
4 schema:author N31b38f81ca6f411ebdd9e4644af4762e
5 schema:datePublished 2004
6 schema:datePublishedReg 2004-01-01
7 schema:description Extraction and representation of the events in trajectory data enable us go beyond the primitive and quantitative values and focus on the high level knowledge. On the other hand, it enables the applications of vast off the shelf methods, which was originally designed for mining event sequences, to trajectory data. In this paper, the problem of symbolizing trajectory data is addressed. We first introduce a static symbolization method, in which typical sub-trajectories are generated automatically based on the data. For facilitating the data mining process on streaming trajectories, we also present an incremental method, which dynamically adjusts the typical sub-trajectories according to the most recent data characters. The performances of our approaches were evaluated on both real data and synthetic data. Experimental results justify the effectiveness of the proposed methods and the superiority of the incremental approach.
8 schema:editor Nb3ca9b0525ed4758b6b6d5870c3e4459
9 schema:genre chapter
10 schema:inLanguage en
11 schema:isAccessibleForFree true
12 schema:isPartOf Nce194329f64d41ffb4acf87986896d95
13 schema:keywords applications
14 approach
15 character
16 data
17 data character
18 data mining
19 data mining process
20 effectiveness
21 event sequences
22 events
23 experimental results
24 extraction
25 hand
26 high level knowledge
27 incremental approach
28 incremental method
29 knowledge
30 level knowledge
31 method
32 mining
33 mining event sequences
34 mining process
35 mobile object trajectories
36 motion data mining
37 object trajectories
38 paper
39 performance
40 problem
41 process
42 quantitative values
43 real data
44 recent data characters
45 representation
46 results
47 sequence
48 shelf methods
49 static symbolization method
50 superiority
51 support
52 symbolization
53 symbolization method
54 synthetic data
55 trajectories
56 trajectory data
57 values
58 schema:name Symbolization of Mobile Object Trajectories with the Support to Motion Data Mining
59 schema:pagination 103-113
60 schema:productId Nac63ad7e51d74093926733f3297f8a51
61 Nc7a827bec1904226b462074623c6fe74
62 schema:publisher N1d7d63e393d443db9c43aa15e35f297e
63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007336360
64 https://doi.org/10.1007/978-3-540-30466-1_10
65 schema:sdDatePublished 2022-01-01T19:22
66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
67 schema:sdPublisher N84289bd734634148ac86cb2cd7063cec
68 schema:url https://doi.org/10.1007/978-3-540-30466-1_10
69 sgo:license sg:explorer/license/
70 sgo:sdDataset chapters
71 rdf:type schema:Chapter
72 N02a5c4cc4fb34a7aa9d78a1a7c4d6779 rdf:first Na53f3e47cf9a4fb9b8153d40de4e768a
73 rdf:rest N29d615b7da754e62a4187ae868479d53
74 N10d077c13d644ef794123dbb39fa4af7 rdf:first sg:person.012303351315.43
75 rdf:rest N7306a87ceeab40eca53206b04aaf07a9
76 N1d7d63e393d443db9c43aa15e35f297e schema:name Springer Nature
77 rdf:type schema:Organisation
78 N21b63e52b3b1400f914e682fed0de869 schema:familyName Ling
79 schema:givenName Tok-Wang
80 rdf:type schema:Person
81 N29d615b7da754e62a4187ae868479d53 rdf:first Nfaceeb8e1e8345099223151624f346da
82 rdf:rest Nab038f164e424858b0f3e203b3595f64
83 N2f0d0922f9104ed980537ec3ff480e64 rdf:first N9fa1802869d64a94a4cd685dbced907d
84 rdf:rest rdf:nil
85 N2f4b199fcda74cedad0391f5c7fa68d3 rdf:first N5c3bb285639a4f68aa8d2fd4fa1c1e0e
86 rdf:rest N682c3e72323c4f888ab912d8fb3466dc
87 N31b38f81ca6f411ebdd9e4644af4762e rdf:first sg:person.013105226367.24
88 rdf:rest N10d077c13d644ef794123dbb39fa4af7
89 N3a3c5642b4c9478fa6682d344960c7e5 schema:familyName Song
90 schema:givenName Il-Yeol
91 rdf:type schema:Person
92 N44878b5a66b941698a6b1e6d663a3a8e rdf:first N21b63e52b3b1400f914e682fed0de869
93 rdf:rest N974c2c9c68cc4f228fc0f6a00281215e
94 N57c09c5466b246e580fc0af9ecb4488d schema:familyName Yang
95 schema:givenName Dong-qing
96 rdf:type schema:Person
97 N5c3bb285639a4f68aa8d2fd4fa1c1e0e schema:familyName Tanaka
98 schema:givenName Katsumi
99 rdf:type schema:Person
100 N682c3e72323c4f888ab912d8fb3466dc rdf:first Nc28b85cd78e64972b7af253c9819799a
101 rdf:rest N44878b5a66b941698a6b1e6d663a3a8e
102 N7306a87ceeab40eca53206b04aaf07a9 rdf:first sg:person.011411464635.59
103 rdf:rest rdf:nil
104 N84289bd734634148ac86cb2cd7063cec schema:name Springer Nature - SN SciGraph project
105 rdf:type schema:Organization
106 N974c2c9c68cc4f228fc0f6a00281215e rdf:first Na72c29aa13b24accb843a936ea31bb5a
107 rdf:rest Nad011faa7d6b49bd958982569e4b052a
108 N9d5467531b5d42a493c6680270c9c436 schema:familyName Wang
109 schema:givenName Shan
110 rdf:type schema:Person
111 N9fa1802869d64a94a4cd685dbced907d schema:familyName Mayr
112 schema:givenName Heinrich C.
113 rdf:type schema:Person
114 Na53f3e47cf9a4fb9b8153d40de4e768a schema:familyName Grandi
115 schema:givenName Fabio
116 rdf:type schema:Person
117 Na72c29aa13b24accb843a936ea31bb5a schema:familyName Guan
118 schema:givenName Jihong
119 rdf:type schema:Person
120 Nab038f164e424858b0f3e203b3595f64 rdf:first N3a3c5642b4c9478fa6682d344960c7e5
121 rdf:rest N2f0d0922f9104ed980537ec3ff480e64
122 Nac63ad7e51d74093926733f3297f8a51 schema:name dimensions_id
123 schema:value pub.1007336360
124 rdf:type schema:PropertyValue
125 Nad011faa7d6b49bd958982569e4b052a rdf:first N57c09c5466b246e580fc0af9ecb4488d
126 rdf:rest N02a5c4cc4fb34a7aa9d78a1a7c4d6779
127 Nb3ca9b0525ed4758b6b6d5870c3e4459 rdf:first N9d5467531b5d42a493c6680270c9c436
128 rdf:rest N2f4b199fcda74cedad0391f5c7fa68d3
129 Nc28b85cd78e64972b7af253c9819799a schema:familyName Zhou
130 schema:givenName Shuigeng
131 rdf:type schema:Person
132 Nc7a827bec1904226b462074623c6fe74 schema:name doi
133 schema:value 10.1007/978-3-540-30466-1_10
134 rdf:type schema:PropertyValue
135 Nce194329f64d41ffb4acf87986896d95 schema:isbn 978-3-540-23722-8
136 978-3-540-30466-1
137 schema:name Conceptual Modeling for Advanced Application Domains
138 rdf:type schema:Book
139 Nfaceeb8e1e8345099223151624f346da schema:familyName Mangina
140 schema:givenName Eleni E.
141 rdf:type schema:Person
142 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
143 schema:name Information and Computing Sciences
144 rdf:type schema:DefinedTerm
145 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
146 schema:name Artificial Intelligence and Image Processing
147 rdf:type schema:DefinedTerm
148 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
149 schema:name Information Systems
150 rdf:type schema:DefinedTerm
151 sg:person.011411464635.59 schema:affiliation grid-institutes:grid.12527.33
152 schema:familyName Sun
153 schema:givenName Jiaguang
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011411464635.59
155 rdf:type schema:Person
156 sg:person.012303351315.43 schema:affiliation grid-institutes:grid.12527.33
157 schema:familyName Wang
158 schema:givenName Jianmin
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012303351315.43
160 rdf:type schema:Person
161 sg:person.013105226367.24 schema:affiliation grid-institutes:grid.12527.33
162 schema:familyName Jin
163 schema:givenName Xiaoming
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013105226367.24
165 rdf:type schema:Person
166 grid-institutes:grid.12527.33 schema:alternateName School of Software, Tsinghua University, 100084, Beijing, China
167 schema:name School of Software, Tsinghua University, 100084, Beijing, China
168 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...