Online Negative Databases View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2004

AUTHORS

Fernando Esponda , Elena S. Ackley , Stephanie Forrest , Paul Helman

ABSTRACT

The benefits of negative detection for obscuring information are explored in the context of Artificial Immune Systems (AIS). AIS based on string matching have the potential for an extra security feature in which the “normal” profile of a system is hidden from its possible hijackers. Even if the model of normal behavior falls into the wrong hands, reconstructing the set of valid or “normal” strings is an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{NP}$\end{document}-hard problem. The data-hiding aspects of negative detection are explored in the context of an application to negative databases. Previous work is reviewed describing possible representations and reversibility properties for privacy-enhancing negative databases. New algorithms are described, which allow on-line creation and updates of negative databases, and future challenges are discussed. More... »

PAGES

175-188

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-30220-9_14

DOI

http://dx.doi.org/10.1007/978-3-540-30220-9_14

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1018554980


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, University of New Mexico, 87131-1386, Albuquerque, NM, USA", 
          "id": "http://www.grid.ac/institutes/grid.266832.b", 
          "name": [
            "Department of Computer Science, University of New Mexico, 87131-1386, Albuquerque, NM, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Esponda", 
        "givenName": "Fernando", 
        "id": "sg:person.0720117634.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0720117634.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, University of New Mexico, 87131-1386, Albuquerque, NM, USA", 
          "id": "http://www.grid.ac/institutes/grid.266832.b", 
          "name": [
            "Department of Computer Science, University of New Mexico, 87131-1386, Albuquerque, NM, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ackley", 
        "givenName": "Elena S.", 
        "id": "sg:person.01124410703.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01124410703.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, University of New Mexico, 87131-1386, Albuquerque, NM, USA", 
          "id": "http://www.grid.ac/institutes/grid.266832.b", 
          "name": [
            "Department of Computer Science, University of New Mexico, 87131-1386, Albuquerque, NM, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Forrest", 
        "givenName": "Stephanie", 
        "id": "sg:person.0712103012.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712103012.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, University of New Mexico, 87131-1386, Albuquerque, NM, USA", 
          "id": "http://www.grid.ac/institutes/grid.266832.b", 
          "name": [
            "Department of Computer Science, University of New Mexico, 87131-1386, Albuquerque, NM, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Helman", 
        "givenName": "Paul", 
        "id": "sg:person.01034346234.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034346234.77"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2004", 
    "datePublishedReg": "2004-01-01", 
    "description": "The benefits of negative detection for obscuring information are explored in the context of Artificial Immune Systems (AIS). AIS based on string matching have the potential for an extra security feature in which the \u201cnormal\u201d profile of a system is hidden from its possible hijackers. Even if the model of normal behavior falls into the wrong hands, reconstructing the set of valid or \u201cnormal\u201d strings is an \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\mathcal{NP}$\\end{document}-hard problem. The data-hiding aspects of negative detection are explored in the context of an application to negative databases. Previous work is reviewed describing possible representations and reversibility properties for privacy-enhancing negative databases. New algorithms are described, which allow on-line creation and updates of negative databases, and future challenges are discussed.", 
    "editor": [
      {
        "familyName": "Nicosia", 
        "givenName": "Giuseppe", 
        "type": "Person"
      }, 
      {
        "familyName": "Cutello", 
        "givenName": "Vincenzo", 
        "type": "Person"
      }, 
      {
        "familyName": "Bentley", 
        "givenName": "Peter J.", 
        "type": "Person"
      }, 
      {
        "familyName": "Timmis", 
        "givenName": "Jon", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-30220-9_14", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-23097-7", 
        "978-3-540-30220-9"
      ], 
      "name": "Artificial Immune Systems", 
      "type": "Book"
    }, 
    "keywords": [
      "artificial immune system", 
      "negative database", 
      "extra security features", 
      "security features", 
      "negative detection", 
      "string matching", 
      "wrong hands", 
      "new algorithm", 
      "line creation", 
      "normal behavior", 
      "database", 
      "possible representations", 
      "previous work", 
      "reversibility property", 
      "algorithm", 
      "matching", 
      "system", 
      "detection", 
      "representation", 
      "update", 
      "information", 
      "set", 
      "context", 
      "future challenges", 
      "applications", 
      "creation", 
      "challenges", 
      "strings", 
      "features", 
      "hijackers", 
      "work", 
      "model", 
      "aspects", 
      "benefits", 
      "hand", 
      "behavior", 
      "potential", 
      "properties", 
      "profile", 
      "immune system", 
      "problem", 
      "possible hijackers", 
      "data-hiding aspects", 
      "privacy-enhancing negative databases", 
      "Online Negative Databases"
    ], 
    "name": "Online Negative Databases", 
    "pagination": "175-188", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1018554980"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-30220-9_14"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-30220-9_14", 
      "https://app.dimensions.ai/details/publication/pub.1018554980"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_62.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-540-30220-9_14"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-30220-9_14'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-30220-9_14'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-30220-9_14'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-30220-9_14'


 

This table displays all metadata directly associated to this object as RDF triples.

145 TRIPLES      23 PREDICATES      71 URIs      63 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-30220-9_14 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 anzsrc-for:0806
4 schema:author Na836ed659a08446c8e83cda2a48a8f25
5 schema:datePublished 2004
6 schema:datePublishedReg 2004-01-01
7 schema:description The benefits of negative detection for obscuring information are explored in the context of Artificial Immune Systems (AIS). AIS based on string matching have the potential for an extra security feature in which the “normal” profile of a system is hidden from its possible hijackers. Even if the model of normal behavior falls into the wrong hands, reconstructing the set of valid or “normal” strings is an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{NP}$\end{document}-hard problem. The data-hiding aspects of negative detection are explored in the context of an application to negative databases. Previous work is reviewed describing possible representations and reversibility properties for privacy-enhancing negative databases. New algorithms are described, which allow on-line creation and updates of negative databases, and future challenges are discussed.
8 schema:editor N6c1fc21146cb469cb0f2007cc7389f5b
9 schema:genre chapter
10 schema:inLanguage en
11 schema:isAccessibleForFree true
12 schema:isPartOf N507f4b64ffe4472b8a6ff3c210adaca4
13 schema:keywords Online Negative Databases
14 algorithm
15 applications
16 artificial immune system
17 aspects
18 behavior
19 benefits
20 challenges
21 context
22 creation
23 data-hiding aspects
24 database
25 detection
26 extra security features
27 features
28 future challenges
29 hand
30 hijackers
31 immune system
32 information
33 line creation
34 matching
35 model
36 negative database
37 negative detection
38 new algorithm
39 normal behavior
40 possible hijackers
41 possible representations
42 potential
43 previous work
44 privacy-enhancing negative databases
45 problem
46 profile
47 properties
48 representation
49 reversibility property
50 security features
51 set
52 string matching
53 strings
54 system
55 update
56 work
57 wrong hands
58 schema:name Online Negative Databases
59 schema:pagination 175-188
60 schema:productId N7ccdf13b80344b988202959d272b2504
61 Ne3ca84d4f3044922a4797210a46f2c61
62 schema:publisher N8de3e1763c2441fdb9a5e332b022b830
63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018554980
64 https://doi.org/10.1007/978-3-540-30220-9_14
65 schema:sdDatePublished 2022-01-01T19:26
66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
67 schema:sdPublisher N96e78b629e22469caa65ab0724c0d95b
68 schema:url https://doi.org/10.1007/978-3-540-30220-9_14
69 sgo:license sg:explorer/license/
70 sgo:sdDataset chapters
71 rdf:type schema:Chapter
72 N49e4a9c7471e4835b0c9b8e00647f935 rdf:first sg:person.01034346234.77
73 rdf:rest rdf:nil
74 N4e69ece36d254f23a3b6b041695f2a2a rdf:first sg:person.01124410703.95
75 rdf:rest Nf66902e4d68c4cf7828802e4826f5be8
76 N507f4b64ffe4472b8a6ff3c210adaca4 schema:isbn 978-3-540-23097-7
77 978-3-540-30220-9
78 schema:name Artificial Immune Systems
79 rdf:type schema:Book
80 N6c1fc21146cb469cb0f2007cc7389f5b rdf:first Nf536495d73eb49fdbd1cba8ad85746ad
81 rdf:rest Nb6d45f2e50824469a4b2259a7629a1f1
82 N7ccdf13b80344b988202959d272b2504 schema:name dimensions_id
83 schema:value pub.1018554980
84 rdf:type schema:PropertyValue
85 N8020b7b2a41e4e4dbda3883ea1590163 schema:familyName Bentley
86 schema:givenName Peter J.
87 rdf:type schema:Person
88 N8bd11b7d924b4e398ff3e6a475a93ff3 schema:familyName Timmis
89 schema:givenName Jon
90 rdf:type schema:Person
91 N8de3e1763c2441fdb9a5e332b022b830 schema:name Springer Nature
92 rdf:type schema:Organisation
93 N96e78b629e22469caa65ab0724c0d95b schema:name Springer Nature - SN SciGraph project
94 rdf:type schema:Organization
95 N9b58ab9858b64229b95a986e6a09d7e2 schema:familyName Cutello
96 schema:givenName Vincenzo
97 rdf:type schema:Person
98 Na836ed659a08446c8e83cda2a48a8f25 rdf:first sg:person.0720117634.32
99 rdf:rest N4e69ece36d254f23a3b6b041695f2a2a
100 Nb6d45f2e50824469a4b2259a7629a1f1 rdf:first N9b58ab9858b64229b95a986e6a09d7e2
101 rdf:rest Ne678af62a89c4410a40120347a80c6a8
102 Ne3ca84d4f3044922a4797210a46f2c61 schema:name doi
103 schema:value 10.1007/978-3-540-30220-9_14
104 rdf:type schema:PropertyValue
105 Ne678af62a89c4410a40120347a80c6a8 rdf:first N8020b7b2a41e4e4dbda3883ea1590163
106 rdf:rest Nf68cbf4b78594dc7b753a206124d50fb
107 Nf536495d73eb49fdbd1cba8ad85746ad schema:familyName Nicosia
108 schema:givenName Giuseppe
109 rdf:type schema:Person
110 Nf66902e4d68c4cf7828802e4826f5be8 rdf:first sg:person.0712103012.64
111 rdf:rest N49e4a9c7471e4835b0c9b8e00647f935
112 Nf68cbf4b78594dc7b753a206124d50fb rdf:first N8bd11b7d924b4e398ff3e6a475a93ff3
113 rdf:rest rdf:nil
114 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
115 schema:name Information and Computing Sciences
116 rdf:type schema:DefinedTerm
117 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
118 schema:name Artificial Intelligence and Image Processing
119 rdf:type schema:DefinedTerm
120 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
121 schema:name Information Systems
122 rdf:type schema:DefinedTerm
123 sg:person.01034346234.77 schema:affiliation grid-institutes:grid.266832.b
124 schema:familyName Helman
125 schema:givenName Paul
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034346234.77
127 rdf:type schema:Person
128 sg:person.01124410703.95 schema:affiliation grid-institutes:grid.266832.b
129 schema:familyName Ackley
130 schema:givenName Elena S.
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01124410703.95
132 rdf:type schema:Person
133 sg:person.0712103012.64 schema:affiliation grid-institutes:grid.266832.b
134 schema:familyName Forrest
135 schema:givenName Stephanie
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712103012.64
137 rdf:type schema:Person
138 sg:person.0720117634.32 schema:affiliation grid-institutes:grid.266832.b
139 schema:familyName Esponda
140 schema:givenName Fernando
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0720117634.32
142 rdf:type schema:Person
143 grid-institutes:grid.266832.b schema:alternateName Department of Computer Science, University of New Mexico, 87131-1386, Albuquerque, NM, USA
144 schema:name Department of Computer Science, University of New Mexico, 87131-1386, Albuquerque, NM, USA
145 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...