On the Knowledge Level of an On-line Shop Assistant View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2004

AUTHORS

Nenad Stojanovic , Rudi Studer

ABSTRACT

Although several approaches have been proposed for modelling an on-line shop assistant, recent customer’s analyses show that they miss some assistance in the buying process. The common problem is that the behaviour of an on-line shop assistant is modelled on the procedural level, i.e. like a workflow. In this paper we present an approach that models this behaviour on the knowledge level, i.e. it takes into account not only which actions (questions) a shop assistant will perform, but also which goals he wants to achieve by taking an action. As a generic reasoning pattern of such an e-shop agent we use the cover-and-differentiate problem-solving method, a method very successfully applied in various diagnosis and classification tasks. In that way, we can (i) model the question-answering process such that the minimal set of useful questions will be provided to a user, (ii) easily reinterpret and fine-tune shopping strategies that exist in other e-shop portals and (iii) design and integrate new methods into generic reasoning pattern. We present an evaluation study which illustrates these benefits. More... »

PAGES

354-370

Book

TITLE

Engineering Knowledge in the Age of the Semantic Web

ISBN

978-3-540-23340-4
978-3-540-30202-5

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-30202-5_24

DOI

http://dx.doi.org/10.1007/978-3-540-30202-5_24

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1013898550


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute AIFB, University of Karlsruhe, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7892.4", 
          "name": [
            "Institute AIFB, University of Karlsruhe, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stojanovic", 
        "givenName": "Nenad", 
        "id": "sg:person.011564632227.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011564632227.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute AIFB, University of Karlsruhe, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7892.4", 
          "name": [
            "Institute AIFB, University of Karlsruhe, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Studer", 
        "givenName": "Rudi", 
        "id": "sg:person.01024266115.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024266115.06"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2004", 
    "datePublishedReg": "2004-01-01", 
    "description": "Although several approaches have been proposed for modelling an on-line shop assistant, recent customer\u2019s analyses show that they miss some assistance in the buying process. The common problem is that the behaviour of an on-line shop assistant is modelled on the procedural level, i.e. like a workflow. In this paper we present an approach that models this behaviour on the knowledge level, i.e. it takes into account not only which actions (questions) a shop assistant will perform, but also which goals he wants to achieve by taking an action. As a generic reasoning pattern of such an e-shop agent we use the cover-and-differentiate problem-solving method, a method very successfully applied in various diagnosis and classification tasks. In that way, we can (i) model the question-answering process such that the minimal set of useful questions will be provided to a user, (ii) easily reinterpret and fine-tune shopping strategies that exist in other e-shop portals and (iii) design and integrate new methods into generic reasoning pattern. We present an evaluation study which illustrates these benefits.", 
    "editor": [
      {
        "familyName": "Motta", 
        "givenName": "Enrico", 
        "type": "Person"
      }, 
      {
        "familyName": "Shadbolt", 
        "givenName": "Nigel R", 
        "type": "Person"
      }, 
      {
        "familyName": "Stutt", 
        "givenName": "Arthur", 
        "type": "Person"
      }, 
      {
        "familyName": "Gibbins", 
        "givenName": "Nick", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-30202-5_24", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-23340-4", 
        "978-3-540-30202-5"
      ], 
      "name": "Engineering Knowledge in the Age of the Semantic Web", 
      "type": "Book"
    }, 
    "keywords": [
      "question-answering process", 
      "problem-solving methods", 
      "shop agents", 
      "classification task", 
      "reasoning patterns", 
      "customer analysis", 
      "shop assistants", 
      "minimal set", 
      "assistants", 
      "buying process", 
      "knowledge level", 
      "procedural level", 
      "evaluation study", 
      "users", 
      "workflow", 
      "new method", 
      "portal", 
      "task", 
      "common problem", 
      "useful questions", 
      "set", 
      "method", 
      "goal", 
      "design", 
      "process", 
      "assistance", 
      "way", 
      "benefits", 
      "shopping strategies", 
      "strategies", 
      "patterns", 
      "behavior", 
      "analysis", 
      "account", 
      "action", 
      "agents", 
      "questions", 
      "levels", 
      "cover", 
      "diagnosis", 
      "study", 
      "approach", 
      "paper", 
      "problem"
    ], 
    "name": "On the Knowledge Level of an On-line Shop Assistant", 
    "pagination": "354-370", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1013898550"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-30202-5_24"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-30202-5_24", 
      "https://app.dimensions.ai/details/publication/pub.1013898550"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-20T07:48", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_421.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-540-30202-5_24"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-30202-5_24'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-30202-5_24'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-30202-5_24'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-30202-5_24'


 

This table displays all metadata directly associated to this object as RDF triples.

126 TRIPLES      23 PREDICATES      70 URIs      63 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-30202-5_24 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Na1621a5d5b984b369624992df0e2ea2b
4 schema:datePublished 2004
5 schema:datePublishedReg 2004-01-01
6 schema:description Although several approaches have been proposed for modelling an on-line shop assistant, recent customer’s analyses show that they miss some assistance in the buying process. The common problem is that the behaviour of an on-line shop assistant is modelled on the procedural level, i.e. like a workflow. In this paper we present an approach that models this behaviour on the knowledge level, i.e. it takes into account not only which actions (questions) a shop assistant will perform, but also which goals he wants to achieve by taking an action. As a generic reasoning pattern of such an e-shop agent we use the cover-and-differentiate problem-solving method, a method very successfully applied in various diagnosis and classification tasks. In that way, we can (i) model the question-answering process such that the minimal set of useful questions will be provided to a user, (ii) easily reinterpret and fine-tune shopping strategies that exist in other e-shop portals and (iii) design and integrate new methods into generic reasoning pattern. We present an evaluation study which illustrates these benefits.
7 schema:editor N49940524a7e145278aaae200c00ee6b1
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N3f6fef340b084a6d9cf2c953604496a2
12 schema:keywords account
13 action
14 agents
15 analysis
16 approach
17 assistance
18 assistants
19 behavior
20 benefits
21 buying process
22 classification task
23 common problem
24 cover
25 customer analysis
26 design
27 diagnosis
28 evaluation study
29 goal
30 knowledge level
31 levels
32 method
33 minimal set
34 new method
35 paper
36 patterns
37 portal
38 problem
39 problem-solving methods
40 procedural level
41 process
42 question-answering process
43 questions
44 reasoning patterns
45 set
46 shop agents
47 shop assistants
48 shopping strategies
49 strategies
50 study
51 task
52 useful questions
53 users
54 way
55 workflow
56 schema:name On the Knowledge Level of an On-line Shop Assistant
57 schema:pagination 354-370
58 schema:productId N954ec1974e874ccdabff07d074097558
59 Nbb6d603be6f6485ab1ecd881dfb717b5
60 schema:publisher Nd52ee407a94d4768aad239a09e5fa29c
61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013898550
62 https://doi.org/10.1007/978-3-540-30202-5_24
63 schema:sdDatePublished 2022-05-20T07:48
64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
65 schema:sdPublisher Ne937835b007c44a889fc2de190eb2d15
66 schema:url https://doi.org/10.1007/978-3-540-30202-5_24
67 sgo:license sg:explorer/license/
68 sgo:sdDataset chapters
69 rdf:type schema:Chapter
70 N3647980eb7874d9a949132a4f9d595ae rdf:first Nf9910a7ad1074018a852dc3d98cb92e0
71 rdf:rest rdf:nil
72 N37a407c916b1448991204feee6b187ee rdf:first Nb4e3873ad9204f8d8f763a1368a8e0e2
73 rdf:rest N57689a2f536044d6a6c876d7453bb2a1
74 N3f6fef340b084a6d9cf2c953604496a2 schema:isbn 978-3-540-23340-4
75 978-3-540-30202-5
76 schema:name Engineering Knowledge in the Age of the Semantic Web
77 rdf:type schema:Book
78 N49940524a7e145278aaae200c00ee6b1 rdf:first Nfa20e0eb71164ea4a95add75e9b102b6
79 rdf:rest N37a407c916b1448991204feee6b187ee
80 N57689a2f536044d6a6c876d7453bb2a1 rdf:first Nd37676e403884d5bb62683d8a1b420b2
81 rdf:rest N3647980eb7874d9a949132a4f9d595ae
82 N685cb3d6a68e4a84b36321fbd54f860f rdf:first sg:person.01024266115.06
83 rdf:rest rdf:nil
84 N954ec1974e874ccdabff07d074097558 schema:name doi
85 schema:value 10.1007/978-3-540-30202-5_24
86 rdf:type schema:PropertyValue
87 Na1621a5d5b984b369624992df0e2ea2b rdf:first sg:person.011564632227.91
88 rdf:rest N685cb3d6a68e4a84b36321fbd54f860f
89 Nb4e3873ad9204f8d8f763a1368a8e0e2 schema:familyName Shadbolt
90 schema:givenName Nigel R
91 rdf:type schema:Person
92 Nbb6d603be6f6485ab1ecd881dfb717b5 schema:name dimensions_id
93 schema:value pub.1013898550
94 rdf:type schema:PropertyValue
95 Nd37676e403884d5bb62683d8a1b420b2 schema:familyName Stutt
96 schema:givenName Arthur
97 rdf:type schema:Person
98 Nd52ee407a94d4768aad239a09e5fa29c schema:name Springer Nature
99 rdf:type schema:Organisation
100 Ne937835b007c44a889fc2de190eb2d15 schema:name Springer Nature - SN SciGraph project
101 rdf:type schema:Organization
102 Nf9910a7ad1074018a852dc3d98cb92e0 schema:familyName Gibbins
103 schema:givenName Nick
104 rdf:type schema:Person
105 Nfa20e0eb71164ea4a95add75e9b102b6 schema:familyName Motta
106 schema:givenName Enrico
107 rdf:type schema:Person
108 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
109 schema:name Information and Computing Sciences
110 rdf:type schema:DefinedTerm
111 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
112 schema:name Artificial Intelligence and Image Processing
113 rdf:type schema:DefinedTerm
114 sg:person.01024266115.06 schema:affiliation grid-institutes:grid.7892.4
115 schema:familyName Studer
116 schema:givenName Rudi
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024266115.06
118 rdf:type schema:Person
119 sg:person.011564632227.91 schema:affiliation grid-institutes:grid.7892.4
120 schema:familyName Stojanovic
121 schema:givenName Nenad
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011564632227.91
123 rdf:type schema:Person
124 grid-institutes:grid.7892.4 schema:alternateName Institute AIFB, University of Karlsruhe, Germany
125 schema:name Institute AIFB, University of Karlsruhe, Germany
126 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...