On the Knowledge Level of an On-line Shop Assistant View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2004

AUTHORS

Nenad Stojanovic , Rudi Studer

ABSTRACT

Although several approaches have been proposed for modelling an on-line shop assistant, recent customer’s analyses show that they miss some assistance in the buying process. The common problem is that the behaviour of an on-line shop assistant is modelled on the procedural level, i.e. like a workflow. In this paper we present an approach that models this behaviour on the knowledge level, i.e. it takes into account not only which actions (questions) a shop assistant will perform, but also which goals he wants to achieve by taking an action. As a generic reasoning pattern of such an e-shop agent we use the cover-and-differentiate problem-solving method, a method very successfully applied in various diagnosis and classification tasks. In that way, we can (i) model the question-answering process such that the minimal set of useful questions will be provided to a user, (ii) easily reinterpret and fine-tune shopping strategies that exist in other e-shop portals and (iii) design and integrate new methods into generic reasoning pattern. We present an evaluation study which illustrates these benefits. More... »

PAGES

354-370

Book

TITLE

Engineering Knowledge in the Age of the Semantic Web

ISBN

978-3-540-23340-4
978-3-540-30202-5

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-30202-5_24

DOI

http://dx.doi.org/10.1007/978-3-540-30202-5_24

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1013898550


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute AIFB, University of Karlsruhe, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7892.4", 
          "name": [
            "Institute AIFB, University of Karlsruhe, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stojanovic", 
        "givenName": "Nenad", 
        "id": "sg:person.011564632227.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011564632227.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute AIFB, University of Karlsruhe, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7892.4", 
          "name": [
            "Institute AIFB, University of Karlsruhe, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Studer", 
        "givenName": "Rudi", 
        "id": "sg:person.01024266115.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024266115.06"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2004", 
    "datePublishedReg": "2004-01-01", 
    "description": "Although several approaches have been proposed for modelling an on-line shop assistant, recent customer\u2019s analyses show that they miss some assistance in the buying process. The common problem is that the behaviour of an on-line shop assistant is modelled on the procedural level, i.e. like a workflow. In this paper we present an approach that models this behaviour on the knowledge level, i.e. it takes into account not only which actions (questions) a shop assistant will perform, but also which goals he wants to achieve by taking an action. As a generic reasoning pattern of such an e-shop agent we use the cover-and-differentiate problem-solving method, a method very successfully applied in various diagnosis and classification tasks. In that way, we can (i) model the question-answering process such that the minimal set of useful questions will be provided to a user, (ii) easily reinterpret and fine-tune shopping strategies that exist in other e-shop portals and (iii) design and integrate new methods into generic reasoning pattern. We present an evaluation study which illustrates these benefits.", 
    "editor": [
      {
        "familyName": "Motta", 
        "givenName": "Enrico", 
        "type": "Person"
      }, 
      {
        "familyName": "Shadbolt", 
        "givenName": "Nigel R", 
        "type": "Person"
      }, 
      {
        "familyName": "Stutt", 
        "givenName": "Arthur", 
        "type": "Person"
      }, 
      {
        "familyName": "Gibbins", 
        "givenName": "Nick", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-30202-5_24", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-23340-4", 
        "978-3-540-30202-5"
      ], 
      "name": "Engineering Knowledge in the Age of the Semantic Web", 
      "type": "Book"
    }, 
    "keywords": [
      "problem-solving methods", 
      "question-answering process", 
      "shop agents", 
      "reasoning patterns", 
      "classification task", 
      "customer analysis", 
      "minimal set", 
      "knowledge level", 
      "assistants", 
      "buying process", 
      "procedural level", 
      "shop assistants", 
      "users", 
      "workflow", 
      "new method", 
      "evaluation study", 
      "portal", 
      "task", 
      "common problem", 
      "method", 
      "set", 
      "useful questions", 
      "goal", 
      "design", 
      "assistance", 
      "process", 
      "way", 
      "shopping strategies", 
      "benefits", 
      "strategies", 
      "analysis", 
      "patterns", 
      "behavior", 
      "account", 
      "action", 
      "agents", 
      "questions", 
      "levels", 
      "diagnosis", 
      "cover", 
      "study", 
      "approach", 
      "paper", 
      "problem", 
      "line shop assistant", 
      "recent customer\u2019s analyses", 
      "generic reasoning pattern", 
      "differentiate problem-solving method", 
      "fine-tune shopping strategies", 
      "shop portals"
    ], 
    "name": "On the Knowledge Level of an On-line Shop Assistant", 
    "pagination": "354-370", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1013898550"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-30202-5_24"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-30202-5_24", 
      "https://app.dimensions.ai/details/publication/pub.1013898550"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_162.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-540-30202-5_24"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-30202-5_24'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-30202-5_24'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-30202-5_24'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-30202-5_24'


 

This table displays all metadata directly associated to this object as RDF triples.

132 TRIPLES      23 PREDICATES      76 URIs      69 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-30202-5_24 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N86b9d6847d744480ad950f5152b3065a
4 schema:datePublished 2004
5 schema:datePublishedReg 2004-01-01
6 schema:description Although several approaches have been proposed for modelling an on-line shop assistant, recent customer’s analyses show that they miss some assistance in the buying process. The common problem is that the behaviour of an on-line shop assistant is modelled on the procedural level, i.e. like a workflow. In this paper we present an approach that models this behaviour on the knowledge level, i.e. it takes into account not only which actions (questions) a shop assistant will perform, but also which goals he wants to achieve by taking an action. As a generic reasoning pattern of such an e-shop agent we use the cover-and-differentiate problem-solving method, a method very successfully applied in various diagnosis and classification tasks. In that way, we can (i) model the question-answering process such that the minimal set of useful questions will be provided to a user, (ii) easily reinterpret and fine-tune shopping strategies that exist in other e-shop portals and (iii) design and integrate new methods into generic reasoning pattern. We present an evaluation study which illustrates these benefits.
7 schema:editor N569243fff965418283b33c847d7a1fab
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N94eee8d22aad417c8df2d407a27e8e0d
12 schema:keywords account
13 action
14 agents
15 analysis
16 approach
17 assistance
18 assistants
19 behavior
20 benefits
21 buying process
22 classification task
23 common problem
24 cover
25 customer analysis
26 design
27 diagnosis
28 differentiate problem-solving method
29 evaluation study
30 fine-tune shopping strategies
31 generic reasoning pattern
32 goal
33 knowledge level
34 levels
35 line shop assistant
36 method
37 minimal set
38 new method
39 paper
40 patterns
41 portal
42 problem
43 problem-solving methods
44 procedural level
45 process
46 question-answering process
47 questions
48 reasoning patterns
49 recent customer’s analyses
50 set
51 shop agents
52 shop assistants
53 shop portals
54 shopping strategies
55 strategies
56 study
57 task
58 useful questions
59 users
60 way
61 workflow
62 schema:name On the Knowledge Level of an On-line Shop Assistant
63 schema:pagination 354-370
64 schema:productId Nc2962ee2f79448179afa2543b6d7f1a0
65 Nc96f10c0ed944ebbb0b187b75a329a72
66 schema:publisher N35b744384ec74c5e881acdad3bf88bde
67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013898550
68 https://doi.org/10.1007/978-3-540-30202-5_24
69 schema:sdDatePublished 2022-01-01T19:09
70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
71 schema:sdPublisher Ne3eb4c71603844f59edc9b85443f8ce6
72 schema:url https://doi.org/10.1007/978-3-540-30202-5_24
73 sgo:license sg:explorer/license/
74 sgo:sdDataset chapters
75 rdf:type schema:Chapter
76 N1fda0fcbd3b847408ce7bf6335f40751 schema:familyName Motta
77 schema:givenName Enrico
78 rdf:type schema:Person
79 N35b744384ec74c5e881acdad3bf88bde schema:name Springer Nature
80 rdf:type schema:Organisation
81 N3cb84c906c544917bed49f2794cc9881 rdf:first N43d0eedf656f40768d9f6d1b0adf725b
82 rdf:rest Ne6b406c30af64ef08fa68e10a93f9f8c
83 N43d0eedf656f40768d9f6d1b0adf725b schema:familyName Stutt
84 schema:givenName Arthur
85 rdf:type schema:Person
86 N569243fff965418283b33c847d7a1fab rdf:first N1fda0fcbd3b847408ce7bf6335f40751
87 rdf:rest N69952aec184b419e99526a9f0d8fdbaa
88 N650bc31a8a3747d996f53685ef823f58 rdf:first sg:person.01024266115.06
89 rdf:rest rdf:nil
90 N69952aec184b419e99526a9f0d8fdbaa rdf:first Nde433ea49f0f465b96ff27df5e857246
91 rdf:rest N3cb84c906c544917bed49f2794cc9881
92 N86b9d6847d744480ad950f5152b3065a rdf:first sg:person.011564632227.91
93 rdf:rest N650bc31a8a3747d996f53685ef823f58
94 N94eee8d22aad417c8df2d407a27e8e0d schema:isbn 978-3-540-23340-4
95 978-3-540-30202-5
96 schema:name Engineering Knowledge in the Age of the Semantic Web
97 rdf:type schema:Book
98 Nc2962ee2f79448179afa2543b6d7f1a0 schema:name dimensions_id
99 schema:value pub.1013898550
100 rdf:type schema:PropertyValue
101 Nc96f10c0ed944ebbb0b187b75a329a72 schema:name doi
102 schema:value 10.1007/978-3-540-30202-5_24
103 rdf:type schema:PropertyValue
104 Nde433ea49f0f465b96ff27df5e857246 schema:familyName Shadbolt
105 schema:givenName Nigel R
106 rdf:type schema:Person
107 Ne3eb4c71603844f59edc9b85443f8ce6 schema:name Springer Nature - SN SciGraph project
108 rdf:type schema:Organization
109 Ne6b406c30af64ef08fa68e10a93f9f8c rdf:first Nf75fcd1e12b8473aa7cc4d5ef31326a8
110 rdf:rest rdf:nil
111 Nf75fcd1e12b8473aa7cc4d5ef31326a8 schema:familyName Gibbins
112 schema:givenName Nick
113 rdf:type schema:Person
114 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
115 schema:name Information and Computing Sciences
116 rdf:type schema:DefinedTerm
117 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
118 schema:name Artificial Intelligence and Image Processing
119 rdf:type schema:DefinedTerm
120 sg:person.01024266115.06 schema:affiliation grid-institutes:grid.7892.4
121 schema:familyName Studer
122 schema:givenName Rudi
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024266115.06
124 rdf:type schema:Person
125 sg:person.011564632227.91 schema:affiliation grid-institutes:grid.7892.4
126 schema:familyName Stojanovic
127 schema:givenName Nenad
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011564632227.91
129 rdf:type schema:Person
130 grid-institutes:grid.7892.4 schema:alternateName Institute AIFB, University of Karlsruhe, Germany
131 schema:name Institute AIFB, University of Karlsruhe, Germany
132 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...