2004
AUTHORSNenad Stojanovic , Rudi Studer
ABSTRACTAlthough several approaches have been proposed for modelling an on-line shop assistant, recent customer’s analyses show that they miss some assistance in the buying process. The common problem is that the behaviour of an on-line shop assistant is modelled on the procedural level, i.e. like a workflow. In this paper we present an approach that models this behaviour on the knowledge level, i.e. it takes into account not only which actions (questions) a shop assistant will perform, but also which goals he wants to achieve by taking an action. As a generic reasoning pattern of such an e-shop agent we use the cover-and-differentiate problem-solving method, a method very successfully applied in various diagnosis and classification tasks. In that way, we can (i) model the question-answering process such that the minimal set of useful questions will be provided to a user, (ii) easily reinterpret and fine-tune shopping strategies that exist in other e-shop portals and (iii) design and integrate new methods into generic reasoning pattern. We present an evaluation study which illustrates these benefits. More... »
PAGES354-370
Engineering Knowledge in the Age of the Semantic Web
ISBN
978-3-540-23340-4
978-3-540-30202-5
http://scigraph.springernature.com/pub.10.1007/978-3-540-30202-5_24
DOIhttp://dx.doi.org/10.1007/978-3-540-30202-5_24
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1013898550
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Artificial Intelligence and Image Processing",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Institute AIFB, University of Karlsruhe, Germany",
"id": "http://www.grid.ac/institutes/grid.7892.4",
"name": [
"Institute AIFB, University of Karlsruhe, Germany"
],
"type": "Organization"
},
"familyName": "Stojanovic",
"givenName": "Nenad",
"id": "sg:person.011564632227.91",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011564632227.91"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute AIFB, University of Karlsruhe, Germany",
"id": "http://www.grid.ac/institutes/grid.7892.4",
"name": [
"Institute AIFB, University of Karlsruhe, Germany"
],
"type": "Organization"
},
"familyName": "Studer",
"givenName": "Rudi",
"id": "sg:person.01024266115.06",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024266115.06"
],
"type": "Person"
}
],
"datePublished": "2004",
"datePublishedReg": "2004-01-01",
"description": "Although several approaches have been proposed for modelling an on-line shop assistant, recent customer\u2019s analyses show that they miss some assistance in the buying process. The common problem is that the behaviour of an on-line shop assistant is modelled on the procedural level, i.e. like a workflow. In this paper we present an approach that models this behaviour on the knowledge level, i.e. it takes into account not only which actions (questions) a shop assistant will perform, but also which goals he wants to achieve by taking an action. As a generic reasoning pattern of such an e-shop agent we use the cover-and-differentiate problem-solving method, a method very successfully applied in various diagnosis and classification tasks. In that way, we can (i) model the question-answering process such that the minimal set of useful questions will be provided to a user, (ii) easily reinterpret and fine-tune shopping strategies that exist in other e-shop portals and (iii) design and integrate new methods into generic reasoning pattern. We present an evaluation study which illustrates these benefits.",
"editor": [
{
"familyName": "Motta",
"givenName": "Enrico",
"type": "Person"
},
{
"familyName": "Shadbolt",
"givenName": "Nigel R",
"type": "Person"
},
{
"familyName": "Stutt",
"givenName": "Arthur",
"type": "Person"
},
{
"familyName": "Gibbins",
"givenName": "Nick",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-540-30202-5_24",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-540-23340-4",
"978-3-540-30202-5"
],
"name": "Engineering Knowledge in the Age of the Semantic Web",
"type": "Book"
},
"keywords": [
"question-answering process",
"problem-solving methods",
"shop agents",
"classification task",
"reasoning patterns",
"customer analysis",
"shop assistants",
"minimal set",
"assistants",
"buying process",
"knowledge level",
"procedural level",
"evaluation study",
"users",
"workflow",
"new method",
"portal",
"task",
"common problem",
"useful questions",
"set",
"method",
"goal",
"design",
"process",
"assistance",
"way",
"benefits",
"shopping strategies",
"strategies",
"patterns",
"behavior",
"analysis",
"account",
"action",
"agents",
"questions",
"levels",
"cover",
"diagnosis",
"study",
"approach",
"paper",
"problem"
],
"name": "On the Knowledge Level of an On-line Shop Assistant",
"pagination": "354-370",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1013898550"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-540-30202-5_24"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-540-30202-5_24",
"https://app.dimensions.ai/details/publication/pub.1013898550"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-20T07:48",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_421.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-540-30202-5_24"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-30202-5_24'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-30202-5_24'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-30202-5_24'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-30202-5_24'
This table displays all metadata directly associated to this object as RDF triples.
126 TRIPLES
23 PREDICATES
70 URIs
63 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-540-30202-5_24 | schema:about | anzsrc-for:08 |
2 | ″ | ″ | anzsrc-for:0801 |
3 | ″ | schema:author | Na1621a5d5b984b369624992df0e2ea2b |
4 | ″ | schema:datePublished | 2004 |
5 | ″ | schema:datePublishedReg | 2004-01-01 |
6 | ″ | schema:description | Although several approaches have been proposed for modelling an on-line shop assistant, recent customer’s analyses show that they miss some assistance in the buying process. The common problem is that the behaviour of an on-line shop assistant is modelled on the procedural level, i.e. like a workflow. In this paper we present an approach that models this behaviour on the knowledge level, i.e. it takes into account not only which actions (questions) a shop assistant will perform, but also which goals he wants to achieve by taking an action. As a generic reasoning pattern of such an e-shop agent we use the cover-and-differentiate problem-solving method, a method very successfully applied in various diagnosis and classification tasks. In that way, we can (i) model the question-answering process such that the minimal set of useful questions will be provided to a user, (ii) easily reinterpret and fine-tune shopping strategies that exist in other e-shop portals and (iii) design and integrate new methods into generic reasoning pattern. We present an evaluation study which illustrates these benefits. |
7 | ″ | schema:editor | N49940524a7e145278aaae200c00ee6b1 |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | N3f6fef340b084a6d9cf2c953604496a2 |
12 | ″ | schema:keywords | account |
13 | ″ | ″ | action |
14 | ″ | ″ | agents |
15 | ″ | ″ | analysis |
16 | ″ | ″ | approach |
17 | ″ | ″ | assistance |
18 | ″ | ″ | assistants |
19 | ″ | ″ | behavior |
20 | ″ | ″ | benefits |
21 | ″ | ″ | buying process |
22 | ″ | ″ | classification task |
23 | ″ | ″ | common problem |
24 | ″ | ″ | cover |
25 | ″ | ″ | customer analysis |
26 | ″ | ″ | design |
27 | ″ | ″ | diagnosis |
28 | ″ | ″ | evaluation study |
29 | ″ | ″ | goal |
30 | ″ | ″ | knowledge level |
31 | ″ | ″ | levels |
32 | ″ | ″ | method |
33 | ″ | ″ | minimal set |
34 | ″ | ″ | new method |
35 | ″ | ″ | paper |
36 | ″ | ″ | patterns |
37 | ″ | ″ | portal |
38 | ″ | ″ | problem |
39 | ″ | ″ | problem-solving methods |
40 | ″ | ″ | procedural level |
41 | ″ | ″ | process |
42 | ″ | ″ | question-answering process |
43 | ″ | ″ | questions |
44 | ″ | ″ | reasoning patterns |
45 | ″ | ″ | set |
46 | ″ | ″ | shop agents |
47 | ″ | ″ | shop assistants |
48 | ″ | ″ | shopping strategies |
49 | ″ | ″ | strategies |
50 | ″ | ″ | study |
51 | ″ | ″ | task |
52 | ″ | ″ | useful questions |
53 | ″ | ″ | users |
54 | ″ | ″ | way |
55 | ″ | ″ | workflow |
56 | ″ | schema:name | On the Knowledge Level of an On-line Shop Assistant |
57 | ″ | schema:pagination | 354-370 |
58 | ″ | schema:productId | N954ec1974e874ccdabff07d074097558 |
59 | ″ | ″ | Nbb6d603be6f6485ab1ecd881dfb717b5 |
60 | ″ | schema:publisher | Nd52ee407a94d4768aad239a09e5fa29c |
61 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1013898550 |
62 | ″ | ″ | https://doi.org/10.1007/978-3-540-30202-5_24 |
63 | ″ | schema:sdDatePublished | 2022-05-20T07:48 |
64 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
65 | ″ | schema:sdPublisher | Ne937835b007c44a889fc2de190eb2d15 |
66 | ″ | schema:url | https://doi.org/10.1007/978-3-540-30202-5_24 |
67 | ″ | sgo:license | sg:explorer/license/ |
68 | ″ | sgo:sdDataset | chapters |
69 | ″ | rdf:type | schema:Chapter |
70 | N3647980eb7874d9a949132a4f9d595ae | rdf:first | Nf9910a7ad1074018a852dc3d98cb92e0 |
71 | ″ | rdf:rest | rdf:nil |
72 | N37a407c916b1448991204feee6b187ee | rdf:first | Nb4e3873ad9204f8d8f763a1368a8e0e2 |
73 | ″ | rdf:rest | N57689a2f536044d6a6c876d7453bb2a1 |
74 | N3f6fef340b084a6d9cf2c953604496a2 | schema:isbn | 978-3-540-23340-4 |
75 | ″ | ″ | 978-3-540-30202-5 |
76 | ″ | schema:name | Engineering Knowledge in the Age of the Semantic Web |
77 | ″ | rdf:type | schema:Book |
78 | N49940524a7e145278aaae200c00ee6b1 | rdf:first | Nfa20e0eb71164ea4a95add75e9b102b6 |
79 | ″ | rdf:rest | N37a407c916b1448991204feee6b187ee |
80 | N57689a2f536044d6a6c876d7453bb2a1 | rdf:first | Nd37676e403884d5bb62683d8a1b420b2 |
81 | ″ | rdf:rest | N3647980eb7874d9a949132a4f9d595ae |
82 | N685cb3d6a68e4a84b36321fbd54f860f | rdf:first | sg:person.01024266115.06 |
83 | ″ | rdf:rest | rdf:nil |
84 | N954ec1974e874ccdabff07d074097558 | schema:name | doi |
85 | ″ | schema:value | 10.1007/978-3-540-30202-5_24 |
86 | ″ | rdf:type | schema:PropertyValue |
87 | Na1621a5d5b984b369624992df0e2ea2b | rdf:first | sg:person.011564632227.91 |
88 | ″ | rdf:rest | N685cb3d6a68e4a84b36321fbd54f860f |
89 | Nb4e3873ad9204f8d8f763a1368a8e0e2 | schema:familyName | Shadbolt |
90 | ″ | schema:givenName | Nigel R |
91 | ″ | rdf:type | schema:Person |
92 | Nbb6d603be6f6485ab1ecd881dfb717b5 | schema:name | dimensions_id |
93 | ″ | schema:value | pub.1013898550 |
94 | ″ | rdf:type | schema:PropertyValue |
95 | Nd37676e403884d5bb62683d8a1b420b2 | schema:familyName | Stutt |
96 | ″ | schema:givenName | Arthur |
97 | ″ | rdf:type | schema:Person |
98 | Nd52ee407a94d4768aad239a09e5fa29c | schema:name | Springer Nature |
99 | ″ | rdf:type | schema:Organisation |
100 | Ne937835b007c44a889fc2de190eb2d15 | schema:name | Springer Nature - SN SciGraph project |
101 | ″ | rdf:type | schema:Organization |
102 | Nf9910a7ad1074018a852dc3d98cb92e0 | schema:familyName | Gibbins |
103 | ″ | schema:givenName | Nick |
104 | ″ | rdf:type | schema:Person |
105 | Nfa20e0eb71164ea4a95add75e9b102b6 | schema:familyName | Motta |
106 | ″ | schema:givenName | Enrico |
107 | ″ | rdf:type | schema:Person |
108 | anzsrc-for:08 | schema:inDefinedTermSet | anzsrc-for: |
109 | ″ | schema:name | Information and Computing Sciences |
110 | ″ | rdf:type | schema:DefinedTerm |
111 | anzsrc-for:0801 | schema:inDefinedTermSet | anzsrc-for: |
112 | ″ | schema:name | Artificial Intelligence and Image Processing |
113 | ″ | rdf:type | schema:DefinedTerm |
114 | sg:person.01024266115.06 | schema:affiliation | grid-institutes:grid.7892.4 |
115 | ″ | schema:familyName | Studer |
116 | ″ | schema:givenName | Rudi |
117 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024266115.06 |
118 | ″ | rdf:type | schema:Person |
119 | sg:person.011564632227.91 | schema:affiliation | grid-institutes:grid.7892.4 |
120 | ″ | schema:familyName | Stojanovic |
121 | ″ | schema:givenName | Nenad |
122 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011564632227.91 |
123 | ″ | rdf:type | schema:Person |
124 | grid-institutes:grid.7892.4 | schema:alternateName | Institute AIFB, University of Karlsruhe, Germany |
125 | ″ | schema:name | Institute AIFB, University of Karlsruhe, Germany |
126 | ″ | rdf:type | schema:Organization |