Reliability of ICA Estimates with Mutual Information View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2004

AUTHORS

Harald Stögbauer , Ralph G. Andrzejak , Alexander Kraskov , Peter Grassberger

ABSTRACT

Obtaining the most independent components from a mixture (under a chosen model) is only the first part of an ICA analysis. After that, it is necessary to measure the actual dependency between the components and the reliability of the decomposition. We have to identify one- and multidimensional components (i.e., clusters of mutually dependent components) or channels which are too close to Gaussians to be reliably separated. For the determination of the dependencies we use a new highly accurate mutual information (MI) estimator. The variability of the MI under remixing provides us a measure for the stability. A rapid growth of the MI under mixing identifies stable components. On the other hand a low variability identifies unreliable components. The method is illustrated on artificial datasets. The usefulness in real-world data is shown on biomedical data. More... »

PAGES

209-216

Book

TITLE

Independent Component Analysis and Blind Signal Separation

ISBN

978-3-540-23056-4
978-3-540-30110-3

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-30110-3_27

DOI

http://dx.doi.org/10.1007/978-3-540-30110-3_27

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1048262042


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Forschungszentrum J\u00fclich", 
          "id": "https://www.grid.ac/institutes/grid.8385.6", 
          "name": [
            "John-von-Neumann Institute for Computing, Forschungszentrum J\u00fclich, D-52425, J\u00fclich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "St\u00f6gbauer", 
        "givenName": "Harald", 
        "id": "sg:person.01270513240.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01270513240.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Forschungszentrum J\u00fclich", 
          "id": "https://www.grid.ac/institutes/grid.8385.6", 
          "name": [
            "John-von-Neumann Institute for Computing, Forschungszentrum J\u00fclich, D-52425, J\u00fclich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Andrzejak", 
        "givenName": "Ralph G.", 
        "id": "sg:person.01371772740.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01371772740.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Forschungszentrum J\u00fclich", 
          "id": "https://www.grid.ac/institutes/grid.8385.6", 
          "name": [
            "John-von-Neumann Institute for Computing, Forschungszentrum J\u00fclich, D-52425, J\u00fclich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kraskov", 
        "givenName": "Alexander", 
        "id": "sg:person.01236123571.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01236123571.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Forschungszentrum J\u00fclich", 
          "id": "https://www.grid.ac/institutes/grid.8385.6", 
          "name": [
            "John-von-Neumann Institute for Computing, Forschungszentrum J\u00fclich, D-52425, J\u00fclich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grassberger", 
        "givenName": "Peter", 
        "id": "sg:person.0704113004.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704113004.84"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physreve.69.066138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032496880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.69.066138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032496880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.70.066123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040975266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.70.066123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040975266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbme.2002.805480", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061525815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/nnsp.2003.1318025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094762558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icassp.1998.681443", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095560897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471221317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471221317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661117"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004", 
    "datePublishedReg": "2004-01-01", 
    "description": "Obtaining the most independent components from a mixture (under a chosen model) is only the first part of an ICA analysis. After that, it is necessary to measure the actual dependency between the components and the reliability of the decomposition. We have to identify one- and multidimensional components (i.e., clusters of mutually dependent components) or channels which are too close to Gaussians to be reliably separated. For the determination of the dependencies we use a new highly accurate mutual information (MI) estimator. The variability of the MI under remixing provides us a measure for the stability. A rapid growth of the MI under mixing identifies stable components. On the other hand a low variability identifies unreliable components. The method is illustrated on artificial datasets. The usefulness in real-world data is shown on biomedical data.", 
    "editor": [
      {
        "familyName": "Puntonet", 
        "givenName": "Carlos G.", 
        "type": "Person"
      }, 
      {
        "familyName": "Prieto", 
        "givenName": "Alberto", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-30110-3_27", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-23056-4", 
        "978-3-540-30110-3"
      ], 
      "name": "Independent Component Analysis and Blind Signal Separation", 
      "type": "Book"
    }, 
    "name": "Reliability of ICA Estimates with Mutual Information", 
    "pagination": "209-216", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1048262042"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-30110-3_27"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e5e9e9ad461f131930b6f857f218285cd5ccfda6fe6c5dc230ae583a56546967"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-30110-3_27", 
      "https://app.dimensions.ai/details/publication/pub.1048262042"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T08:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70037_00000002.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-540-30110-3_27"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-30110-3_27'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-30110-3_27'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-30110-3_27'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-30110-3_27'


 

This table displays all metadata directly associated to this object as RDF triples.

109 TRIPLES      23 PREDICATES      33 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-30110-3_27 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N4163cab416ac4a32a084aadc76edbce5
4 schema:citation https://doi.org/10.1002/0471221317
5 https://doi.org/10.1103/physreve.69.066138
6 https://doi.org/10.1103/physreve.70.066123
7 https://doi.org/10.1109/icassp.1998.681443
8 https://doi.org/10.1109/nnsp.2003.1318025
9 https://doi.org/10.1109/tbme.2002.805480
10 schema:datePublished 2004
11 schema:datePublishedReg 2004-01-01
12 schema:description Obtaining the most independent components from a mixture (under a chosen model) is only the first part of an ICA analysis. After that, it is necessary to measure the actual dependency between the components and the reliability of the decomposition. We have to identify one- and multidimensional components (i.e., clusters of mutually dependent components) or channels which are too close to Gaussians to be reliably separated. For the determination of the dependencies we use a new highly accurate mutual information (MI) estimator. The variability of the MI under remixing provides us a measure for the stability. A rapid growth of the MI under mixing identifies stable components. On the other hand a low variability identifies unreliable components. The method is illustrated on artificial datasets. The usefulness in real-world data is shown on biomedical data.
13 schema:editor N1d53ba1ab13a43008885370053845897
14 schema:genre chapter
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf N41831c2b069843389d1557bd0f8a8921
18 schema:name Reliability of ICA Estimates with Mutual Information
19 schema:pagination 209-216
20 schema:productId Nb23f65202263477c9fb19f0027665d35
21 Nd4624140c212475f86a1e4610562b409
22 Ne060d683ab7543a9b5489b7d72b02878
23 schema:publisher Ne881400ec86d4f09a01666ca8897727d
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048262042
25 https://doi.org/10.1007/978-3-540-30110-3_27
26 schema:sdDatePublished 2019-04-16T08:23
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher N008069076e01439ba93cf05c14270d29
29 schema:url https://link.springer.com/10.1007%2F978-3-540-30110-3_27
30 sgo:license sg:explorer/license/
31 sgo:sdDataset chapters
32 rdf:type schema:Chapter
33 N008069076e01439ba93cf05c14270d29 schema:name Springer Nature - SN SciGraph project
34 rdf:type schema:Organization
35 N15c87ae37f1646b38146b2912885c0e6 schema:familyName Prieto
36 schema:givenName Alberto
37 rdf:type schema:Person
38 N1d53ba1ab13a43008885370053845897 rdf:first Nb1093174bd4f48d2aec171fcf7543c7e
39 rdf:rest N7ee02aa810c04a51804961abef57137f
40 N1ebe9957f453400fa0376deaa3761efa rdf:first sg:person.01371772740.75
41 rdf:rest N33d3e6deed8b402db2ff06be790260fc
42 N33d3e6deed8b402db2ff06be790260fc rdf:first sg:person.01236123571.67
43 rdf:rest Na7dec96bd6884c62a75664936a2c2f45
44 N4163cab416ac4a32a084aadc76edbce5 rdf:first sg:person.01270513240.38
45 rdf:rest N1ebe9957f453400fa0376deaa3761efa
46 N41831c2b069843389d1557bd0f8a8921 schema:isbn 978-3-540-23056-4
47 978-3-540-30110-3
48 schema:name Independent Component Analysis and Blind Signal Separation
49 rdf:type schema:Book
50 N7ee02aa810c04a51804961abef57137f rdf:first N15c87ae37f1646b38146b2912885c0e6
51 rdf:rest rdf:nil
52 Na7dec96bd6884c62a75664936a2c2f45 rdf:first sg:person.0704113004.84
53 rdf:rest rdf:nil
54 Nb1093174bd4f48d2aec171fcf7543c7e schema:familyName Puntonet
55 schema:givenName Carlos G.
56 rdf:type schema:Person
57 Nb23f65202263477c9fb19f0027665d35 schema:name readcube_id
58 schema:value e5e9e9ad461f131930b6f857f218285cd5ccfda6fe6c5dc230ae583a56546967
59 rdf:type schema:PropertyValue
60 Nd4624140c212475f86a1e4610562b409 schema:name dimensions_id
61 schema:value pub.1048262042
62 rdf:type schema:PropertyValue
63 Ne060d683ab7543a9b5489b7d72b02878 schema:name doi
64 schema:value 10.1007/978-3-540-30110-3_27
65 rdf:type schema:PropertyValue
66 Ne881400ec86d4f09a01666ca8897727d schema:location Berlin, Heidelberg
67 schema:name Springer Berlin Heidelberg
68 rdf:type schema:Organisation
69 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
70 schema:name Information and Computing Sciences
71 rdf:type schema:DefinedTerm
72 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
73 schema:name Artificial Intelligence and Image Processing
74 rdf:type schema:DefinedTerm
75 sg:person.01236123571.67 schema:affiliation https://www.grid.ac/institutes/grid.8385.6
76 schema:familyName Kraskov
77 schema:givenName Alexander
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01236123571.67
79 rdf:type schema:Person
80 sg:person.01270513240.38 schema:affiliation https://www.grid.ac/institutes/grid.8385.6
81 schema:familyName Stögbauer
82 schema:givenName Harald
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01270513240.38
84 rdf:type schema:Person
85 sg:person.01371772740.75 schema:affiliation https://www.grid.ac/institutes/grid.8385.6
86 schema:familyName Andrzejak
87 schema:givenName Ralph G.
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01371772740.75
89 rdf:type schema:Person
90 sg:person.0704113004.84 schema:affiliation https://www.grid.ac/institutes/grid.8385.6
91 schema:familyName Grassberger
92 schema:givenName Peter
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704113004.84
94 rdf:type schema:Person
95 https://doi.org/10.1002/0471221317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098661117
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1103/physreve.69.066138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032496880
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1103/physreve.70.066123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040975266
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1109/icassp.1998.681443 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095560897
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1109/nnsp.2003.1318025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094762558
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1109/tbme.2002.805480 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061525815
106 rdf:type schema:CreativeWork
107 https://www.grid.ac/institutes/grid.8385.6 schema:alternateName Forschungszentrum Jülich
108 schema:name John-von-Neumann Institute for Computing, Forschungszentrum Jülich, D-52425, Jülich, Germany
109 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...