Learning with Drift Detection View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2004

AUTHORS

João Gama , Pedro Medas , Gladys Castillo , Pedro Rodrigues

ABSTRACT

Most of the work in machine learning assume that examples are generated at random according to some stationary probability distribution. In this work we study the problem of learning when the distribution that generate the examples changes over time. We present a method for detection of changes in the probability distribution of examples. The idea behind the drift detection method is to control the online error-rate of the algorithm. The training examples are presented in sequence. When a new training example is available, it is classified using the actual model. Statistical theory guarantees that while the distribution is stationary, the error will decrease. When the distribution changes, the error will increase. The method controls the trace of the online error of the algorithm. For the actual context we define a warning level, and a drift level. A new context is declared, if in a sequence of examples, the error increases reaching the warning level at example kw, and the drift level at example kd. This is an indication of a change in the distribution of the examples. The algorithm learns a new model using only the examples since kw. The method was tested with a set of eight artificial datasets and a real world dataset. We used three learning algorithms: a perceptron, a neural network and a decision tree. The experimental results show a good performance detecting drift and with learning the new concept. We also observe that the method is independent of the learning algorithm. More... »

PAGES

286-295

References to SciGraph publications

Book

TITLE

Advances in Artificial Intelligence – SBIA 2004

ISBN

978-3-540-23237-7
978-3-540-28645-5

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-28645-5_29

DOI

http://dx.doi.org/10.1007/978-3-540-28645-5_29

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1051660541


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Porto", 
          "id": "https://www.grid.ac/institutes/grid.5808.5", 
          "name": [
            "LIACC, University of Porto, Rua Campo Alegre 823, 4150, Porto, Portugal", 
            "Fac. Economics, University of Porto"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gama", 
        "givenName": "Jo\u00e3o", 
        "id": "sg:person.011001067722.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011001067722.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Porto", 
          "id": "https://www.grid.ac/institutes/grid.5808.5", 
          "name": [
            "LIACC, University of Porto, Rua Campo Alegre 823, 4150, Porto, Portugal"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Medas", 
        "givenName": "Pedro", 
        "id": "sg:person.015627462141.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015627462141.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Aveiro", 
          "id": "https://www.grid.ac/institutes/grid.7311.4", 
          "name": [
            "LIACC, University of Porto, Rua Campo Alegre 823, 4150, Porto, Portugal", 
            "University of Aveiro"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Castillo", 
        "givenName": "Gladys", 
        "id": "sg:person.015237077151.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015237077151.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Porto", 
          "id": "https://www.grid.ac/institutes/grid.5808.5", 
          "name": [
            "LIACC, University of Porto, Rua Campo Alegre 823, 4150, Porto, Portugal"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rodrigues", 
        "givenName": "Pedro", 
        "id": "sg:person.011726504540.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011726504540.41"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/3-540-59286-5_74", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009791448", 
          "https://doi.org/10.1007/3-540-59286-5_74"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1007661119649", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018650476", 
          "https://doi.org/10.1023/a:1007661119649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00116900", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025237168", 
          "https://doi.org/10.1007/bf00116900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00116900", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025237168", 
          "https://doi.org/10.1007/bf00116900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1390807", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069468261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3233/ida-2004-8305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107700015"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004", 
    "datePublishedReg": "2004-01-01", 
    "description": "Most of the work in machine learning assume that examples are generated at random according to some stationary probability distribution. In this work we study the problem of learning when the distribution that generate the examples changes over time. We present a method for detection of changes in the probability distribution of examples. The idea behind the drift detection method is to control the online error-rate of the algorithm. The training examples are presented in sequence. When a new training example is available, it is classified using the actual model. Statistical theory guarantees that while the distribution is stationary, the error will decrease. When the distribution changes, the error will increase. The method controls the trace of the online error of the algorithm. For the actual context we define a warning level, and a drift level. A new context is declared, if in a sequence of examples, the error increases reaching the warning level at example kw, and the drift level at example kd. This is an indication of a change in the distribution of the examples. The algorithm learns a new model using only the examples since kw. The method was tested with a set of eight artificial datasets and a real world dataset. We used three learning algorithms: a perceptron, a neural network and a decision tree. The experimental results show a good performance detecting drift and with learning the new concept. We also observe that the method is independent of the learning algorithm.", 
    "editor": [
      {
        "familyName": "Bazzan", 
        "givenName": "Ana L. C.", 
        "type": "Person"
      }, 
      {
        "familyName": "Labidi", 
        "givenName": "Sofiane", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-28645-5_29", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-23237-7", 
        "978-3-540-28645-5"
      ], 
      "name": "Advances in Artificial Intelligence \u2013 SBIA 2004", 
      "type": "Book"
    }, 
    "name": "Learning with Drift Detection", 
    "pagination": "286-295", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1051660541"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-28645-5_29"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f615d80f00c226b529c41e73c8add21d30df65264c76c2270aa1220024511c2c"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-28645-5_29", 
      "https://app.dimensions.ai/details/publication/pub.1051660541"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T08:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70066_00000002.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-540-28645-5_29"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-28645-5_29'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-28645-5_29'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-28645-5_29'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-28645-5_29'


 

This table displays all metadata directly associated to this object as RDF triples.

114 TRIPLES      23 PREDICATES      32 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-28645-5_29 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nce560ba5c74c41289ae4763d61dca4f1
4 schema:citation sg:pub.10.1007/3-540-59286-5_74
5 sg:pub.10.1007/bf00116900
6 sg:pub.10.1023/a:1007661119649
7 https://doi.org/10.2307/1390807
8 https://doi.org/10.3233/ida-2004-8305
9 schema:datePublished 2004
10 schema:datePublishedReg 2004-01-01
11 schema:description Most of the work in machine learning assume that examples are generated at random according to some stationary probability distribution. In this work we study the problem of learning when the distribution that generate the examples changes over time. We present a method for detection of changes in the probability distribution of examples. The idea behind the drift detection method is to control the online error-rate of the algorithm. The training examples are presented in sequence. When a new training example is available, it is classified using the actual model. Statistical theory guarantees that while the distribution is stationary, the error will decrease. When the distribution changes, the error will increase. The method controls the trace of the online error of the algorithm. For the actual context we define a warning level, and a drift level. A new context is declared, if in a sequence of examples, the error increases reaching the warning level at example kw, and the drift level at example kd. This is an indication of a change in the distribution of the examples. The algorithm learns a new model using only the examples since kw. The method was tested with a set of eight artificial datasets and a real world dataset. We used three learning algorithms: a perceptron, a neural network and a decision tree. The experimental results show a good performance detecting drift and with learning the new concept. We also observe that the method is independent of the learning algorithm.
12 schema:editor Nff53ddc0fdb446eebaf632a63bc7d57e
13 schema:genre chapter
14 schema:inLanguage en
15 schema:isAccessibleForFree true
16 schema:isPartOf Nc97eb25e34e948119e4cca6818202c95
17 schema:name Learning with Drift Detection
18 schema:pagination 286-295
19 schema:productId N2fca5ed1661b40978107a91551f9e724
20 Nc3563636a98e43a5ba8c8e57369df63b
21 Ncfe3e0edbef6425fa1070b4d9857d8a5
22 schema:publisher N3d106197b50446ee94205b381303455a
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051660541
24 https://doi.org/10.1007/978-3-540-28645-5_29
25 schema:sdDatePublished 2019-04-16T08:28
26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
27 schema:sdPublisher Nd1324a17ad964f6aa114f4684a3b38b3
28 schema:url https://link.springer.com/10.1007%2F978-3-540-28645-5_29
29 sgo:license sg:explorer/license/
30 sgo:sdDataset chapters
31 rdf:type schema:Chapter
32 N02228ce205e64bd3be1c992d7c44a1c3 rdf:first sg:person.015237077151.36
33 rdf:rest N9c21080ec32e4a87a913a93d617032c5
34 N137e3623b57d4c88a4caf79df163f9a7 rdf:first N480e8b7501c54997a52503a4174645c5
35 rdf:rest rdf:nil
36 N2fca5ed1661b40978107a91551f9e724 schema:name dimensions_id
37 schema:value pub.1051660541
38 rdf:type schema:PropertyValue
39 N3d106197b50446ee94205b381303455a schema:location Berlin, Heidelberg
40 schema:name Springer Berlin Heidelberg
41 rdf:type schema:Organisation
42 N480e8b7501c54997a52503a4174645c5 schema:familyName Labidi
43 schema:givenName Sofiane
44 rdf:type schema:Person
45 N9c21080ec32e4a87a913a93d617032c5 rdf:first sg:person.011726504540.41
46 rdf:rest rdf:nil
47 Nad5c563f138e4c6eb96e2d7207472957 schema:familyName Bazzan
48 schema:givenName Ana L. C.
49 rdf:type schema:Person
50 Nc3563636a98e43a5ba8c8e57369df63b schema:name doi
51 schema:value 10.1007/978-3-540-28645-5_29
52 rdf:type schema:PropertyValue
53 Nc97eb25e34e948119e4cca6818202c95 schema:isbn 978-3-540-23237-7
54 978-3-540-28645-5
55 schema:name Advances in Artificial Intelligence – SBIA 2004
56 rdf:type schema:Book
57 Nce560ba5c74c41289ae4763d61dca4f1 rdf:first sg:person.011001067722.17
58 rdf:rest Nfc9add7f2a70451dbd04d5270074f43d
59 Ncfe3e0edbef6425fa1070b4d9857d8a5 schema:name readcube_id
60 schema:value f615d80f00c226b529c41e73c8add21d30df65264c76c2270aa1220024511c2c
61 rdf:type schema:PropertyValue
62 Nd1324a17ad964f6aa114f4684a3b38b3 schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 Nfc9add7f2a70451dbd04d5270074f43d rdf:first sg:person.015627462141.57
65 rdf:rest N02228ce205e64bd3be1c992d7c44a1c3
66 Nff53ddc0fdb446eebaf632a63bc7d57e rdf:first Nad5c563f138e4c6eb96e2d7207472957
67 rdf:rest N137e3623b57d4c88a4caf79df163f9a7
68 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
69 schema:name Information and Computing Sciences
70 rdf:type schema:DefinedTerm
71 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
72 schema:name Artificial Intelligence and Image Processing
73 rdf:type schema:DefinedTerm
74 sg:person.011001067722.17 schema:affiliation https://www.grid.ac/institutes/grid.5808.5
75 schema:familyName Gama
76 schema:givenName João
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011001067722.17
78 rdf:type schema:Person
79 sg:person.011726504540.41 schema:affiliation https://www.grid.ac/institutes/grid.5808.5
80 schema:familyName Rodrigues
81 schema:givenName Pedro
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011726504540.41
83 rdf:type schema:Person
84 sg:person.015237077151.36 schema:affiliation https://www.grid.ac/institutes/grid.7311.4
85 schema:familyName Castillo
86 schema:givenName Gladys
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015237077151.36
88 rdf:type schema:Person
89 sg:person.015627462141.57 schema:affiliation https://www.grid.ac/institutes/grid.5808.5
90 schema:familyName Medas
91 schema:givenName Pedro
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015627462141.57
93 rdf:type schema:Person
94 sg:pub.10.1007/3-540-59286-5_74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009791448
95 https://doi.org/10.1007/3-540-59286-5_74
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/bf00116900 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025237168
98 https://doi.org/10.1007/bf00116900
99 rdf:type schema:CreativeWork
100 sg:pub.10.1023/a:1007661119649 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018650476
101 https://doi.org/10.1023/a:1007661119649
102 rdf:type schema:CreativeWork
103 https://doi.org/10.2307/1390807 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069468261
104 rdf:type schema:CreativeWork
105 https://doi.org/10.3233/ida-2004-8305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107700015
106 rdf:type schema:CreativeWork
107 https://www.grid.ac/institutes/grid.5808.5 schema:alternateName University of Porto
108 schema:name Fac. Economics, University of Porto
109 LIACC, University of Porto, Rua Campo Alegre 823, 4150, Porto, Portugal
110 rdf:type schema:Organization
111 https://www.grid.ac/institutes/grid.7311.4 schema:alternateName University of Aveiro
112 schema:name LIACC, University of Porto, Rua Campo Alegre 823, 4150, Porto, Portugal
113 University of Aveiro
114 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...