Comparing Elliptic Curve Cryptography and RSA on 8-bit CPUs View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2004

AUTHORS

Nils Gura , Arun Patel , Arvinderpal Wander , Hans Eberle , Sheueling Chang Shantz

ABSTRACT

Strong public-key cryptography is often considered to be too computationally expensive for small devices if not accelerated by cryptographic hardware. We revisited this statement and implemented elliptic curve point multiplication for 160-bit, 192-bit, and 224-bit NIST/SECG curves over GF(p) and RSA-1024 and RSA-2048 on two 8-bit microcontrollers. To accelerate multiple-precision multiplication, we propose a new algorithm to reduce the number of memory accesses. Implementation and analysis led to three observations: 1. Public-key cryptography is viable on small devices without hardware acceleration. On an Atmel ATmega128 at 8 MHz we measured 0.81s for 160-bit ECC point multiplication and 0.43s for a RSA-1024 operation with exponent e=216+1. 2. The relative performance advantage of ECC point multiplication over RSA modular exponentiation increases with the decrease in processor word size and the increase in key size. 3. Elliptic curves over fields using pseudo-Mersenne primes as standardized by NIST and SECG allow for high performance implementations and show no performance disadvantage over optimal extension fields or prime fields selected specifically for a particular processor architecture. More... »

PAGES

119-132

Book

TITLE

Cryptographic Hardware and Embedded Systems - CHES 2004

ISBN

978-3-540-22666-6
978-3-540-28632-5

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-28632-5_9

DOI

http://dx.doi.org/10.1007/978-3-540-28632-5_9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008174972


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0804", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Data Format", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Sun Microsystems Laboratories"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gura", 
        "givenName": "Nils", 
        "id": "sg:person.015253241204.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015253241204.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Sun Microsystems Laboratories"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Patel", 
        "givenName": "Arun", 
        "id": "sg:person.011257007151.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011257007151.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Sun Microsystems Laboratories"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wander", 
        "givenName": "Arvinderpal", 
        "id": "sg:person.012651750151.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012651750151.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Sun Microsystems Laboratories"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eberle", 
        "givenName": "Hans", 
        "id": "sg:person.014475300515.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014475300515.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Sun Microsystems Laboratories"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shantz", 
        "givenName": "Sheueling Chang", 
        "id": "sg:person.016665622115.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016665622115.07"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bfb0054024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021283536", 
          "https://doi.org/10.1007/bfb0054024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0055748", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021339129", 
          "https://doi.org/10.1007/bfb0055748"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-49649-1_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028653910", 
          "https://doi.org/10.1007/3-540-49649-1_6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-35528-3_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046807342", 
          "https://doi.org/10.1007/978-0-387-35528-3_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.21914/anziamj.v44i0.686", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069281086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/ita/1990240605311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083550351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cahpc.2002.1180754", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095722387"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004", 
    "datePublishedReg": "2004-01-01", 
    "description": "Strong public-key cryptography is often considered to be too computationally expensive for small devices if not accelerated by cryptographic hardware. We revisited this statement and implemented elliptic curve point multiplication for 160-bit, 192-bit, and 224-bit NIST/SECG curves over GF(p) and RSA-1024 and RSA-2048 on two 8-bit microcontrollers. To accelerate multiple-precision multiplication, we propose a new algorithm to reduce the number of memory accesses. Implementation and analysis led to three observations: 1. Public-key cryptography is viable on small devices without hardware acceleration. On an Atmel ATmega128 at 8 MHz we measured 0.81s for 160-bit ECC point multiplication and 0.43s for a RSA-1024 operation with exponent e=216+1. 2. The relative performance advantage of ECC point multiplication over RSA modular exponentiation increases with the decrease in processor word size and the increase in key size. 3. Elliptic curves over fields using pseudo-Mersenne primes as standardized by NIST and SECG allow for high performance implementations and show no performance disadvantage over optimal extension fields or prime fields selected specifically for a particular processor architecture.", 
    "editor": [
      {
        "familyName": "Joye", 
        "givenName": "Marc", 
        "type": "Person"
      }, 
      {
        "familyName": "Quisquater", 
        "givenName": "Jean-Jacques", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-28632-5_9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-22666-6", 
        "978-3-540-28632-5"
      ], 
      "name": "Cryptographic Hardware and Embedded Systems - CHES 2004", 
      "type": "Book"
    }, 
    "name": "Comparing Elliptic Curve Cryptography and RSA on 8-bit CPUs", 
    "pagination": "119-132", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008174972"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-28632-5_9"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "26f294b9c5c4822733472a6fc62feb28e71cd6ada3808815931539c6fd62dd28"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-28632-5_9", 
      "https://app.dimensions.ai/details/publication/pub.1008174972"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T08:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70046_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-540-28632-5_9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-28632-5_9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-28632-5_9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-28632-5_9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-28632-5_9'


 

This table displays all metadata directly associated to this object as RDF triples.

130 TRIPLES      23 PREDICATES      34 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-28632-5_9 schema:about anzsrc-for:08
2 anzsrc-for:0804
3 schema:author Ne614852d1e0b4307b23aef26a87e8af4
4 schema:citation sg:pub.10.1007/3-540-49649-1_6
5 sg:pub.10.1007/978-0-387-35528-3_5
6 sg:pub.10.1007/bfb0054024
7 sg:pub.10.1007/bfb0055748
8 https://doi.org/10.1051/ita/1990240605311
9 https://doi.org/10.1109/cahpc.2002.1180754
10 https://doi.org/10.21914/anziamj.v44i0.686
11 schema:datePublished 2004
12 schema:datePublishedReg 2004-01-01
13 schema:description Strong public-key cryptography is often considered to be too computationally expensive for small devices if not accelerated by cryptographic hardware. We revisited this statement and implemented elliptic curve point multiplication for 160-bit, 192-bit, and 224-bit NIST/SECG curves over GF(p) and RSA-1024 and RSA-2048 on two 8-bit microcontrollers. To accelerate multiple-precision multiplication, we propose a new algorithm to reduce the number of memory accesses. Implementation and analysis led to three observations: 1. Public-key cryptography is viable on small devices without hardware acceleration. On an Atmel ATmega128 at 8 MHz we measured 0.81s for 160-bit ECC point multiplication and 0.43s for a RSA-1024 operation with exponent e=216+1. 2. The relative performance advantage of ECC point multiplication over RSA modular exponentiation increases with the decrease in processor word size and the increase in key size. 3. Elliptic curves over fields using pseudo-Mersenne primes as standardized by NIST and SECG allow for high performance implementations and show no performance disadvantage over optimal extension fields or prime fields selected specifically for a particular processor architecture.
14 schema:editor N23035ec219c4408c8dae7058388de8c4
15 schema:genre chapter
16 schema:inLanguage en
17 schema:isAccessibleForFree true
18 schema:isPartOf N3b4509e6cb164016bfd3182e8e72d262
19 schema:name Comparing Elliptic Curve Cryptography and RSA on 8-bit CPUs
20 schema:pagination 119-132
21 schema:productId N29bbbd72ff2048968250f1f0abfee68a
22 N45c6add19f8f45fca12768bf1e15e72f
23 Nd97c84c49ee34a4bb191783aea94ad28
24 schema:publisher Nd9a7f6a82f474da4856e38d4615ad20d
25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008174972
26 https://doi.org/10.1007/978-3-540-28632-5_9
27 schema:sdDatePublished 2019-04-16T08:24
28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
29 schema:sdPublisher N98628e00df064296bd3acc9d2bd6ee80
30 schema:url https://link.springer.com/10.1007%2F978-3-540-28632-5_9
31 sgo:license sg:explorer/license/
32 sgo:sdDataset chapters
33 rdf:type schema:Chapter
34 N02efe000ad3b40f590f876dfa5d9e845 schema:name Sun Microsystems Laboratories
35 rdf:type schema:Organization
36 N102fecdef3774918b171c1197ed2f429 schema:name Sun Microsystems Laboratories
37 rdf:type schema:Organization
38 N23035ec219c4408c8dae7058388de8c4 rdf:first N91ced93fc7c64d7b97a19b9e4bcfb212
39 rdf:rest Nbda05c5164004fea9aed9d437398d481
40 N29bbbd72ff2048968250f1f0abfee68a schema:name readcube_id
41 schema:value 26f294b9c5c4822733472a6fc62feb28e71cd6ada3808815931539c6fd62dd28
42 rdf:type schema:PropertyValue
43 N3b4509e6cb164016bfd3182e8e72d262 schema:isbn 978-3-540-22666-6
44 978-3-540-28632-5
45 schema:name Cryptographic Hardware and Embedded Systems - CHES 2004
46 rdf:type schema:Book
47 N45c6add19f8f45fca12768bf1e15e72f schema:name doi
48 schema:value 10.1007/978-3-540-28632-5_9
49 rdf:type schema:PropertyValue
50 N46ef914f403e45338b9101ce6aedb392 rdf:first sg:person.014475300515.81
51 rdf:rest N92d4c90950bd4cfaba956d18f139fd3f
52 N5f4ad5780d90491f898aef94f138c256 schema:name Sun Microsystems Laboratories
53 rdf:type schema:Organization
54 N91ced93fc7c64d7b97a19b9e4bcfb212 schema:familyName Joye
55 schema:givenName Marc
56 rdf:type schema:Person
57 N92d4c90950bd4cfaba956d18f139fd3f rdf:first sg:person.016665622115.07
58 rdf:rest rdf:nil
59 N98628e00df064296bd3acc9d2bd6ee80 schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 N98dd35b7fe094b7082d3b55f287323b5 rdf:first sg:person.012651750151.41
62 rdf:rest N46ef914f403e45338b9101ce6aedb392
63 Na6441d340d024931bb936d58de5de753 schema:name Sun Microsystems Laboratories
64 rdf:type schema:Organization
65 Na6d3e1aed7864c4f9a662849b81d2c67 schema:familyName Quisquater
66 schema:givenName Jean-Jacques
67 rdf:type schema:Person
68 Nb57f027ee3844c969a494fb2971d7e36 rdf:first sg:person.011257007151.00
69 rdf:rest N98dd35b7fe094b7082d3b55f287323b5
70 Nbda05c5164004fea9aed9d437398d481 rdf:first Na6d3e1aed7864c4f9a662849b81d2c67
71 rdf:rest rdf:nil
72 Nce563925cab0499d85e429bc9814217a schema:name Sun Microsystems Laboratories
73 rdf:type schema:Organization
74 Nd97c84c49ee34a4bb191783aea94ad28 schema:name dimensions_id
75 schema:value pub.1008174972
76 rdf:type schema:PropertyValue
77 Nd9a7f6a82f474da4856e38d4615ad20d schema:location Berlin, Heidelberg
78 schema:name Springer Berlin Heidelberg
79 rdf:type schema:Organisation
80 Ne614852d1e0b4307b23aef26a87e8af4 rdf:first sg:person.015253241204.71
81 rdf:rest Nb57f027ee3844c969a494fb2971d7e36
82 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
83 schema:name Information and Computing Sciences
84 rdf:type schema:DefinedTerm
85 anzsrc-for:0804 schema:inDefinedTermSet anzsrc-for:
86 schema:name Data Format
87 rdf:type schema:DefinedTerm
88 sg:person.011257007151.00 schema:affiliation Nce563925cab0499d85e429bc9814217a
89 schema:familyName Patel
90 schema:givenName Arun
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011257007151.00
92 rdf:type schema:Person
93 sg:person.012651750151.41 schema:affiliation N5f4ad5780d90491f898aef94f138c256
94 schema:familyName Wander
95 schema:givenName Arvinderpal
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012651750151.41
97 rdf:type schema:Person
98 sg:person.014475300515.81 schema:affiliation N02efe000ad3b40f590f876dfa5d9e845
99 schema:familyName Eberle
100 schema:givenName Hans
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014475300515.81
102 rdf:type schema:Person
103 sg:person.015253241204.71 schema:affiliation Na6441d340d024931bb936d58de5de753
104 schema:familyName Gura
105 schema:givenName Nils
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015253241204.71
107 rdf:type schema:Person
108 sg:person.016665622115.07 schema:affiliation N102fecdef3774918b171c1197ed2f429
109 schema:familyName Shantz
110 schema:givenName Sheueling Chang
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016665622115.07
112 rdf:type schema:Person
113 sg:pub.10.1007/3-540-49649-1_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028653910
114 https://doi.org/10.1007/3-540-49649-1_6
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/978-0-387-35528-3_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046807342
117 https://doi.org/10.1007/978-0-387-35528-3_5
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/bfb0054024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021283536
120 https://doi.org/10.1007/bfb0054024
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/bfb0055748 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021339129
123 https://doi.org/10.1007/bfb0055748
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1051/ita/1990240605311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083550351
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1109/cahpc.2002.1180754 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095722387
128 rdf:type schema:CreativeWork
129 https://doi.org/10.21914/anziamj.v44i0.686 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069281086
130 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...