Comparing Elliptic Curve Cryptography and RSA on 8-bit CPUs View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2004

AUTHORS

Nils Gura , Arun Patel , Arvinderpal Wander , Hans Eberle , Sheueling Chang Shantz

ABSTRACT

Strong public-key cryptography is often considered to be too computationally expensive for small devices if not accelerated by cryptographic hardware. We revisited this statement and implemented elliptic curve point multiplication for 160-bit, 192-bit, and 224-bit NIST/SECG curves over GF(p) and RSA-1024 and RSA-2048 on two 8-bit microcontrollers. To accelerate multiple-precision multiplication, we propose a new algorithm to reduce the number of memory accesses. Implementation and analysis led to three observations: 1. Public-key cryptography is viable on small devices without hardware acceleration. On an Atmel ATmega128 at 8 MHz we measured 0.81s for 160-bit ECC point multiplication and 0.43s for a RSA-1024 operation with exponent e=216+1. 2. The relative performance advantage of ECC point multiplication over RSA modular exponentiation increases with the decrease in processor word size and the increase in key size. 3. Elliptic curves over fields using pseudo-Mersenne primes as standardized by NIST and SECG allow for high performance implementations and show no performance disadvantage over optimal extension fields or prime fields selected specifically for a particular processor architecture. More... »

PAGES

119-132

Book

TITLE

Cryptographic Hardware and Embedded Systems - CHES 2004

ISBN

978-3-540-22666-6
978-3-540-28632-5

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-28632-5_9

DOI

http://dx.doi.org/10.1007/978-3-540-28632-5_9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008174972


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0804", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Data Format", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Sun Microsystems Laboratories"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gura", 
        "givenName": "Nils", 
        "id": "sg:person.015253241204.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015253241204.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Sun Microsystems Laboratories"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Patel", 
        "givenName": "Arun", 
        "id": "sg:person.011257007151.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011257007151.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Sun Microsystems Laboratories"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wander", 
        "givenName": "Arvinderpal", 
        "id": "sg:person.012651750151.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012651750151.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Sun Microsystems Laboratories"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eberle", 
        "givenName": "Hans", 
        "id": "sg:person.014475300515.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014475300515.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Sun Microsystems Laboratories"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shantz", 
        "givenName": "Sheueling Chang", 
        "id": "sg:person.016665622115.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016665622115.07"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bfb0054024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021283536", 
          "https://doi.org/10.1007/bfb0054024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0055748", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021339129", 
          "https://doi.org/10.1007/bfb0055748"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-49649-1_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028653910", 
          "https://doi.org/10.1007/3-540-49649-1_6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-35528-3_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046807342", 
          "https://doi.org/10.1007/978-0-387-35528-3_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.21914/anziamj.v44i0.686", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069281086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/ita/1990240605311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083550351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cahpc.2002.1180754", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095722387"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004", 
    "datePublishedReg": "2004-01-01", 
    "description": "Strong public-key cryptography is often considered to be too computationally expensive for small devices if not accelerated by cryptographic hardware. We revisited this statement and implemented elliptic curve point multiplication for 160-bit, 192-bit, and 224-bit NIST/SECG curves over GF(p) and RSA-1024 and RSA-2048 on two 8-bit microcontrollers. To accelerate multiple-precision multiplication, we propose a new algorithm to reduce the number of memory accesses. Implementation and analysis led to three observations: 1. Public-key cryptography is viable on small devices without hardware acceleration. On an Atmel ATmega128 at 8 MHz we measured 0.81s for 160-bit ECC point multiplication and 0.43s for a RSA-1024 operation with exponent e=216+1. 2. The relative performance advantage of ECC point multiplication over RSA modular exponentiation increases with the decrease in processor word size and the increase in key size. 3. Elliptic curves over fields using pseudo-Mersenne primes as standardized by NIST and SECG allow for high performance implementations and show no performance disadvantage over optimal extension fields or prime fields selected specifically for a particular processor architecture.", 
    "editor": [
      {
        "familyName": "Joye", 
        "givenName": "Marc", 
        "type": "Person"
      }, 
      {
        "familyName": "Quisquater", 
        "givenName": "Jean-Jacques", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-28632-5_9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-22666-6", 
        "978-3-540-28632-5"
      ], 
      "name": "Cryptographic Hardware and Embedded Systems - CHES 2004", 
      "type": "Book"
    }, 
    "name": "Comparing Elliptic Curve Cryptography and RSA on 8-bit CPUs", 
    "pagination": "119-132", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008174972"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-28632-5_9"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "26f294b9c5c4822733472a6fc62feb28e71cd6ada3808815931539c6fd62dd28"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-28632-5_9", 
      "https://app.dimensions.ai/details/publication/pub.1008174972"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T08:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70046_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-540-28632-5_9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-28632-5_9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-28632-5_9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-28632-5_9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-28632-5_9'


 

This table displays all metadata directly associated to this object as RDF triples.

130 TRIPLES      23 PREDICATES      34 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-28632-5_9 schema:about anzsrc-for:08
2 anzsrc-for:0804
3 schema:author N77bd9f1939ac4af89e35a3bb16d0112e
4 schema:citation sg:pub.10.1007/3-540-49649-1_6
5 sg:pub.10.1007/978-0-387-35528-3_5
6 sg:pub.10.1007/bfb0054024
7 sg:pub.10.1007/bfb0055748
8 https://doi.org/10.1051/ita/1990240605311
9 https://doi.org/10.1109/cahpc.2002.1180754
10 https://doi.org/10.21914/anziamj.v44i0.686
11 schema:datePublished 2004
12 schema:datePublishedReg 2004-01-01
13 schema:description Strong public-key cryptography is often considered to be too computationally expensive for small devices if not accelerated by cryptographic hardware. We revisited this statement and implemented elliptic curve point multiplication for 160-bit, 192-bit, and 224-bit NIST/SECG curves over GF(p) and RSA-1024 and RSA-2048 on two 8-bit microcontrollers. To accelerate multiple-precision multiplication, we propose a new algorithm to reduce the number of memory accesses. Implementation and analysis led to three observations: 1. Public-key cryptography is viable on small devices without hardware acceleration. On an Atmel ATmega128 at 8 MHz we measured 0.81s for 160-bit ECC point multiplication and 0.43s for a RSA-1024 operation with exponent e=216+1. 2. The relative performance advantage of ECC point multiplication over RSA modular exponentiation increases with the decrease in processor word size and the increase in key size. 3. Elliptic curves over fields using pseudo-Mersenne primes as standardized by NIST and SECG allow for high performance implementations and show no performance disadvantage over optimal extension fields or prime fields selected specifically for a particular processor architecture.
14 schema:editor Ne10e4f17d28540b586eca2a0e8841062
15 schema:genre chapter
16 schema:inLanguage en
17 schema:isAccessibleForFree true
18 schema:isPartOf N9a716cb799454808912ad0121739d35d
19 schema:name Comparing Elliptic Curve Cryptography and RSA on 8-bit CPUs
20 schema:pagination 119-132
21 schema:productId N4a5084127eb64896b52c1c213816f65a
22 N9d639e5b50c44a4185996c49264fcddc
23 Naa6b385e18a440a9a7fecff72568066a
24 schema:publisher N56337529e55a4e33a9499486a848a7ff
25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008174972
26 https://doi.org/10.1007/978-3-540-28632-5_9
27 schema:sdDatePublished 2019-04-16T08:24
28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
29 schema:sdPublisher N81f51ac907be4a249d5a2a2c9f5295ed
30 schema:url https://link.springer.com/10.1007%2F978-3-540-28632-5_9
31 sgo:license sg:explorer/license/
32 sgo:sdDataset chapters
33 rdf:type schema:Chapter
34 N0f9fbc9fc5d144209c70ac1f72bd9cb9 schema:name Sun Microsystems Laboratories
35 rdf:type schema:Organization
36 N0fb71d9b9698487eb37fbc25f7faa6e4 rdf:first sg:person.016665622115.07
37 rdf:rest rdf:nil
38 N30c5e1570f9b41ec9b40c3273cfc7d87 rdf:first sg:person.011257007151.00
39 rdf:rest N61cb46f42c7c48bebdcbb84242b06054
40 N47b3928d1a7e4ca983bd982cc53b7bff rdf:first sg:person.014475300515.81
41 rdf:rest N0fb71d9b9698487eb37fbc25f7faa6e4
42 N4a5084127eb64896b52c1c213816f65a schema:name doi
43 schema:value 10.1007/978-3-540-28632-5_9
44 rdf:type schema:PropertyValue
45 N56337529e55a4e33a9499486a848a7ff schema:location Berlin, Heidelberg
46 schema:name Springer Berlin Heidelberg
47 rdf:type schema:Organisation
48 N61cb46f42c7c48bebdcbb84242b06054 rdf:first sg:person.012651750151.41
49 rdf:rest N47b3928d1a7e4ca983bd982cc53b7bff
50 N77bd9f1939ac4af89e35a3bb16d0112e rdf:first sg:person.015253241204.71
51 rdf:rest N30c5e1570f9b41ec9b40c3273cfc7d87
52 N7a6560527efc414fb71dd0321ae72cca schema:name Sun Microsystems Laboratories
53 rdf:type schema:Organization
54 N81f51ac907be4a249d5a2a2c9f5295ed schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 N9a716cb799454808912ad0121739d35d schema:isbn 978-3-540-22666-6
57 978-3-540-28632-5
58 schema:name Cryptographic Hardware and Embedded Systems - CHES 2004
59 rdf:type schema:Book
60 N9d639e5b50c44a4185996c49264fcddc schema:name readcube_id
61 schema:value 26f294b9c5c4822733472a6fc62feb28e71cd6ada3808815931539c6fd62dd28
62 rdf:type schema:PropertyValue
63 Naa6b385e18a440a9a7fecff72568066a schema:name dimensions_id
64 schema:value pub.1008174972
65 rdf:type schema:PropertyValue
66 Nae85cd9f39074c55a7fe6f4ca174d3c3 schema:name Sun Microsystems Laboratories
67 rdf:type schema:Organization
68 Nb84be78fc0d746f990cb39de6fab0338 schema:name Sun Microsystems Laboratories
69 rdf:type schema:Organization
70 Nc5d328bce54b4f4ca04d0551a91d0368 rdf:first Nea98b086fcb8417797ec1a5f3ecb290c
71 rdf:rest rdf:nil
72 Nd8314f1887a24c77bb21f12d23a945c5 schema:name Sun Microsystems Laboratories
73 rdf:type schema:Organization
74 Ne10e4f17d28540b586eca2a0e8841062 rdf:first Nea261554fa8f4305bd7ef943495304ea
75 rdf:rest Nc5d328bce54b4f4ca04d0551a91d0368
76 Nea261554fa8f4305bd7ef943495304ea schema:familyName Joye
77 schema:givenName Marc
78 rdf:type schema:Person
79 Nea98b086fcb8417797ec1a5f3ecb290c schema:familyName Quisquater
80 schema:givenName Jean-Jacques
81 rdf:type schema:Person
82 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
83 schema:name Information and Computing Sciences
84 rdf:type schema:DefinedTerm
85 anzsrc-for:0804 schema:inDefinedTermSet anzsrc-for:
86 schema:name Data Format
87 rdf:type schema:DefinedTerm
88 sg:person.011257007151.00 schema:affiliation Nb84be78fc0d746f990cb39de6fab0338
89 schema:familyName Patel
90 schema:givenName Arun
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011257007151.00
92 rdf:type schema:Person
93 sg:person.012651750151.41 schema:affiliation N7a6560527efc414fb71dd0321ae72cca
94 schema:familyName Wander
95 schema:givenName Arvinderpal
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012651750151.41
97 rdf:type schema:Person
98 sg:person.014475300515.81 schema:affiliation Nd8314f1887a24c77bb21f12d23a945c5
99 schema:familyName Eberle
100 schema:givenName Hans
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014475300515.81
102 rdf:type schema:Person
103 sg:person.015253241204.71 schema:affiliation Nae85cd9f39074c55a7fe6f4ca174d3c3
104 schema:familyName Gura
105 schema:givenName Nils
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015253241204.71
107 rdf:type schema:Person
108 sg:person.016665622115.07 schema:affiliation N0f9fbc9fc5d144209c70ac1f72bd9cb9
109 schema:familyName Shantz
110 schema:givenName Sheueling Chang
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016665622115.07
112 rdf:type schema:Person
113 sg:pub.10.1007/3-540-49649-1_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028653910
114 https://doi.org/10.1007/3-540-49649-1_6
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/978-0-387-35528-3_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046807342
117 https://doi.org/10.1007/978-0-387-35528-3_5
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/bfb0054024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021283536
120 https://doi.org/10.1007/bfb0054024
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/bfb0055748 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021339129
123 https://doi.org/10.1007/bfb0055748
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1051/ita/1990240605311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083550351
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1109/cahpc.2002.1180754 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095722387
128 rdf:type schema:CreativeWork
129 https://doi.org/10.21914/anziamj.v44i0.686 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069281086
130 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...