Temporal Dynamics of On-Line Information Streams View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2016-07-12

AUTHORS

Jon Kleinberg

ABSTRACT

A number of recent computing applications involve information arriving continuously over time in the form of a data stream, and this has led to new ways of thinking about traditional problems in a variety of areas. In some cases, the rate and overall volume of data in the stream may be so great that it cannot all be stored for processing, and this leads to new requirements for efficiency and scalability. In other cases, the quantities of information may still be manageable, but the data stream perspective takes what has generally been a static view of a problem and adds a strong temporal dimension to it. Our focus here is on some of the challenges that this latter issue raises in the settings of text mining, on-line information, and information retrieval. More... »

PAGES

221-238

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-28608-0_11

DOI

http://dx.doi.org/10.1007/978-3-540-28608-0_11

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1025345274


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, Cornell University, 4105B Upson Hall, 14853, Ithaca, NY, USA", 
          "id": "http://www.grid.ac/institutes/grid.5386.8", 
          "name": [
            "Department of Computer Science, Cornell University, 4105B Upson Hall, 14853, Ithaca, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kleinberg", 
        "givenName": "Jon", 
        "id": "sg:person.011522233557.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011522233557.04"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2016-07-12", 
    "datePublishedReg": "2016-07-12", 
    "description": "A number of recent computing applications involve information arriving continuously over time in the form of a data stream, and this has led to new ways of thinking about traditional problems in a variety of areas. In some cases, the rate and overall volume of data in the stream may be so great that it cannot all be stored for processing, and this leads to new requirements for efficiency and scalability. In other cases, the quantities of information may still be manageable, but the data stream perspective takes what has generally been a static view of a problem and adds a strong temporal dimension to it. Our focus here is on some of the challenges that this latter issue raises in the settings of text mining, on-line information, and information retrieval.", 
    "editor": [
      {
        "familyName": "Garofalakis", 
        "givenName": "Minos", 
        "type": "Person"
      }, 
      {
        "familyName": "Gehrke", 
        "givenName": "Johannes", 
        "type": "Person"
      }, 
      {
        "familyName": "Rastogi", 
        "givenName": "Rajeev", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-28608-0_11", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-28607-3", 
        "978-3-540-28608-0"
      ], 
      "name": "Data Stream Management", 
      "type": "Book"
    }, 
    "keywords": [
      "computing applications", 
      "information retrieval", 
      "data streams", 
      "text mining", 
      "information streams", 
      "quantity of information", 
      "line information", 
      "new requirements", 
      "strong temporal dimension", 
      "variety of areas", 
      "temporal dimension", 
      "static view", 
      "traditional problems", 
      "information", 
      "scalability", 
      "streams", 
      "new way", 
      "mining", 
      "latter issue", 
      "retrieval", 
      "requirements", 
      "processing", 
      "applications", 
      "challenges", 
      "issues", 
      "temporal dynamics", 
      "efficiency", 
      "way", 
      "view", 
      "data", 
      "number", 
      "time", 
      "variety", 
      "focus", 
      "perspective", 
      "dimensions", 
      "setting", 
      "area", 
      "cases", 
      "dynamics", 
      "form", 
      "volume", 
      "quantity", 
      "overall volume", 
      "rate", 
      "problem", 
      "recent computing applications", 
      "data stream perspective", 
      "stream perspective", 
      "Line Information Streams"
    ], 
    "name": "Temporal Dynamics of On-Line Information Streams", 
    "pagination": "221-238", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1025345274"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-28608-0_11"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-28608-0_11", 
      "https://app.dimensions.ai/details/publication/pub.1025345274"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_21.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-540-28608-0_11"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-28608-0_11'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-28608-0_11'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-28608-0_11'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-28608-0_11'


 

This table displays all metadata directly associated to this object as RDF triples.

124 TRIPLES      23 PREDICATES      76 URIs      68 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-28608-0_11 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 anzsrc-for:0806
4 schema:author N4cbabdb0ac50435fb718508fd989fe45
5 schema:datePublished 2016-07-12
6 schema:datePublishedReg 2016-07-12
7 schema:description A number of recent computing applications involve information arriving continuously over time in the form of a data stream, and this has led to new ways of thinking about traditional problems in a variety of areas. In some cases, the rate and overall volume of data in the stream may be so great that it cannot all be stored for processing, and this leads to new requirements for efficiency and scalability. In other cases, the quantities of information may still be manageable, but the data stream perspective takes what has generally been a static view of a problem and adds a strong temporal dimension to it. Our focus here is on some of the challenges that this latter issue raises in the settings of text mining, on-line information, and information retrieval.
8 schema:editor N903e403a350a470fb7754021dfca8941
9 schema:genre chapter
10 schema:inLanguage en
11 schema:isAccessibleForFree true
12 schema:isPartOf N4a27f177cc274911a7d7397e82692d58
13 schema:keywords Line Information Streams
14 applications
15 area
16 cases
17 challenges
18 computing applications
19 data
20 data stream perspective
21 data streams
22 dimensions
23 dynamics
24 efficiency
25 focus
26 form
27 information
28 information retrieval
29 information streams
30 issues
31 latter issue
32 line information
33 mining
34 new requirements
35 new way
36 number
37 overall volume
38 perspective
39 problem
40 processing
41 quantity
42 quantity of information
43 rate
44 recent computing applications
45 requirements
46 retrieval
47 scalability
48 setting
49 static view
50 stream perspective
51 streams
52 strong temporal dimension
53 temporal dimension
54 temporal dynamics
55 text mining
56 time
57 traditional problems
58 variety
59 variety of areas
60 view
61 volume
62 way
63 schema:name Temporal Dynamics of On-Line Information Streams
64 schema:pagination 221-238
65 schema:productId Nca9c24512f93400f8732158b5bb57e2e
66 Nd9245b54785a49b4a910c64a9fb403ff
67 schema:publisher N9b8d975783784e0a83ac1429ba1daca4
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025345274
69 https://doi.org/10.1007/978-3-540-28608-0_11
70 schema:sdDatePublished 2022-01-01T19:12
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher N5bd1063e21424df4b744570070e70c89
73 schema:url https://doi.org/10.1007/978-3-540-28608-0_11
74 sgo:license sg:explorer/license/
75 sgo:sdDataset chapters
76 rdf:type schema:Chapter
77 N4a27f177cc274911a7d7397e82692d58 schema:isbn 978-3-540-28607-3
78 978-3-540-28608-0
79 schema:name Data Stream Management
80 rdf:type schema:Book
81 N4cbabdb0ac50435fb718508fd989fe45 rdf:first sg:person.011522233557.04
82 rdf:rest rdf:nil
83 N500bc5d0e811406182055c99c8d197bb rdf:first N86a5e7bbc05f4a7ebe4119f60a6a0b38
84 rdf:rest Ncdd6dd3be51d4c79b94f7299bc3b30c6
85 N5bd1063e21424df4b744570070e70c89 schema:name Springer Nature - SN SciGraph project
86 rdf:type schema:Organization
87 N86a5e7bbc05f4a7ebe4119f60a6a0b38 schema:familyName Gehrke
88 schema:givenName Johannes
89 rdf:type schema:Person
90 N8c5bdc64394b47a19e0ed01a64261528 schema:familyName Garofalakis
91 schema:givenName Minos
92 rdf:type schema:Person
93 N903e403a350a470fb7754021dfca8941 rdf:first N8c5bdc64394b47a19e0ed01a64261528
94 rdf:rest N500bc5d0e811406182055c99c8d197bb
95 N9b8d975783784e0a83ac1429ba1daca4 schema:name Springer Nature
96 rdf:type schema:Organisation
97 Nca9c24512f93400f8732158b5bb57e2e schema:name doi
98 schema:value 10.1007/978-3-540-28608-0_11
99 rdf:type schema:PropertyValue
100 Ncdd6dd3be51d4c79b94f7299bc3b30c6 rdf:first Ne45d4ec4cee048c68d22f5c3fc3e9865
101 rdf:rest rdf:nil
102 Nd9245b54785a49b4a910c64a9fb403ff schema:name dimensions_id
103 schema:value pub.1025345274
104 rdf:type schema:PropertyValue
105 Ne45d4ec4cee048c68d22f5c3fc3e9865 schema:familyName Rastogi
106 schema:givenName Rajeev
107 rdf:type schema:Person
108 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
109 schema:name Information and Computing Sciences
110 rdf:type schema:DefinedTerm
111 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
112 schema:name Artificial Intelligence and Image Processing
113 rdf:type schema:DefinedTerm
114 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
115 schema:name Information Systems
116 rdf:type schema:DefinedTerm
117 sg:person.011522233557.04 schema:affiliation grid-institutes:grid.5386.8
118 schema:familyName Kleinberg
119 schema:givenName Jon
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011522233557.04
121 rdf:type schema:Person
122 grid-institutes:grid.5386.8 schema:alternateName Department of Computer Science, Cornell University, 4105B Upson Hall, 14853, Ithaca, NY, USA
123 schema:name Department of Computer Science, Cornell University, 4105B Upson Hall, 14853, Ithaca, NY, USA
124 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...