Ontology type: schema:Chapter Open Access: True
2016-07-12
AUTHORS ABSTRACTA number of recent computing applications involve information arriving continuously over time in the form of a data stream, and this has led to new ways of thinking about traditional problems in a variety of areas. In some cases, the rate and overall volume of data in the stream may be so great that it cannot all be stored for processing, and this leads to new requirements for efficiency and scalability. In other cases, the quantities of information may still be manageable, but the data stream perspective takes what has generally been a static view of a problem and adds a strong temporal dimension to it. Our focus here is on some of the challenges that this latter issue raises in the settings of text mining, on-line information, and information retrieval. More... »
PAGES221-238
Data Stream Management
ISBN
978-3-540-28607-3
978-3-540-28608-0
http://scigraph.springernature.com/pub.10.1007/978-3-540-28608-0_11
DOIhttp://dx.doi.org/10.1007/978-3-540-28608-0_11
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1025345274
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Artificial Intelligence and Image Processing",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information Systems",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Computer Science, Cornell University, 4105B Upson Hall, 14853, Ithaca, NY, USA",
"id": "http://www.grid.ac/institutes/grid.5386.8",
"name": [
"Department of Computer Science, Cornell University, 4105B Upson Hall, 14853, Ithaca, NY, USA"
],
"type": "Organization"
},
"familyName": "Kleinberg",
"givenName": "Jon",
"id": "sg:person.011522233557.04",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011522233557.04"
],
"type": "Person"
}
],
"datePublished": "2016-07-12",
"datePublishedReg": "2016-07-12",
"description": "A number of recent computing applications involve information arriving continuously over time in the form of a data stream, and this has led to new ways of thinking about traditional problems in a variety of areas. In some cases, the rate and overall volume of data in the stream may be so great that it cannot all be stored for processing, and this leads to new requirements for efficiency and scalability. In other cases, the quantities of information may still be manageable, but the data stream perspective takes what has generally been a static view of a problem and adds a strong temporal dimension to it. Our focus here is on some of the challenges that this latter issue raises in the settings of text mining, on-line information, and information retrieval.",
"editor": [
{
"familyName": "Garofalakis",
"givenName": "Minos",
"type": "Person"
},
{
"familyName": "Gehrke",
"givenName": "Johannes",
"type": "Person"
},
{
"familyName": "Rastogi",
"givenName": "Rajeev",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-540-28608-0_11",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": {
"isbn": [
"978-3-540-28607-3",
"978-3-540-28608-0"
],
"name": "Data Stream Management",
"type": "Book"
},
"keywords": [
"information retrieval",
"computing applications",
"data streams",
"text mining",
"information streams",
"quantity of information",
"new requirements",
"line information",
"variety of areas",
"strong temporal dimension",
"temporal dimension",
"traditional problems",
"static view",
"information",
"scalability",
"streams",
"new way",
"mining",
"latter issue",
"retrieval",
"requirements",
"processing",
"temporal dynamics",
"applications",
"challenges",
"issues",
"efficiency",
"way",
"data",
"view",
"number",
"variety",
"time",
"focus",
"perspective",
"dimensions",
"setting",
"cases",
"area",
"dynamics",
"form",
"volume",
"quantity",
"overall volume",
"rate",
"problem"
],
"name": "Temporal Dynamics of On-Line Information Streams",
"pagination": "221-238",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1025345274"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-540-28608-0_11"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-540-28608-0_11",
"https://app.dimensions.ai/details/publication/pub.1025345274"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-20T07:47",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_375.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-540-28608-0_11"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-28608-0_11'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-28608-0_11'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-28608-0_11'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-28608-0_11'
This table displays all metadata directly associated to this object as RDF triples.
120 TRIPLES
23 PREDICATES
72 URIs
64 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-540-28608-0_11 | schema:about | anzsrc-for:08 |
2 | ″ | ″ | anzsrc-for:0801 |
3 | ″ | ″ | anzsrc-for:0806 |
4 | ″ | schema:author | Ne2981e17ab714d4eaa156018b44eef19 |
5 | ″ | schema:datePublished | 2016-07-12 |
6 | ″ | schema:datePublishedReg | 2016-07-12 |
7 | ″ | schema:description | A number of recent computing applications involve information arriving continuously over time in the form of a data stream, and this has led to new ways of thinking about traditional problems in a variety of areas. In some cases, the rate and overall volume of data in the stream may be so great that it cannot all be stored for processing, and this leads to new requirements for efficiency and scalability. In other cases, the quantities of information may still be manageable, but the data stream perspective takes what has generally been a static view of a problem and adds a strong temporal dimension to it. Our focus here is on some of the challenges that this latter issue raises in the settings of text mining, on-line information, and information retrieval. |
8 | ″ | schema:editor | Ne30d380933944166bf10198407d1c5a0 |
9 | ″ | schema:genre | chapter |
10 | ″ | schema:inLanguage | en |
11 | ″ | schema:isAccessibleForFree | true |
12 | ″ | schema:isPartOf | N9c76f0a3ef664a21860cb46f05aeea4a |
13 | ″ | schema:keywords | applications |
14 | ″ | ″ | area |
15 | ″ | ″ | cases |
16 | ″ | ″ | challenges |
17 | ″ | ″ | computing applications |
18 | ″ | ″ | data |
19 | ″ | ″ | data streams |
20 | ″ | ″ | dimensions |
21 | ″ | ″ | dynamics |
22 | ″ | ″ | efficiency |
23 | ″ | ″ | focus |
24 | ″ | ″ | form |
25 | ″ | ″ | information |
26 | ″ | ″ | information retrieval |
27 | ″ | ″ | information streams |
28 | ″ | ″ | issues |
29 | ″ | ″ | latter issue |
30 | ″ | ″ | line information |
31 | ″ | ″ | mining |
32 | ″ | ″ | new requirements |
33 | ″ | ″ | new way |
34 | ″ | ″ | number |
35 | ″ | ″ | overall volume |
36 | ″ | ″ | perspective |
37 | ″ | ″ | problem |
38 | ″ | ″ | processing |
39 | ″ | ″ | quantity |
40 | ″ | ″ | quantity of information |
41 | ″ | ″ | rate |
42 | ″ | ″ | requirements |
43 | ″ | ″ | retrieval |
44 | ″ | ″ | scalability |
45 | ″ | ″ | setting |
46 | ″ | ″ | static view |
47 | ″ | ″ | streams |
48 | ″ | ″ | strong temporal dimension |
49 | ″ | ″ | temporal dimension |
50 | ″ | ″ | temporal dynamics |
51 | ″ | ″ | text mining |
52 | ″ | ″ | time |
53 | ″ | ″ | traditional problems |
54 | ″ | ″ | variety |
55 | ″ | ″ | variety of areas |
56 | ″ | ″ | view |
57 | ″ | ″ | volume |
58 | ″ | ″ | way |
59 | ″ | schema:name | Temporal Dynamics of On-Line Information Streams |
60 | ″ | schema:pagination | 221-238 |
61 | ″ | schema:productId | N14e179b950c74dbda0246b1ceb6ca1c1 |
62 | ″ | ″ | Nd332bcb87b1f4bcd9d8957cbe51ee923 |
63 | ″ | schema:publisher | N152ad83f692144e1a07dcd8fd2c8ca34 |
64 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1025345274 |
65 | ″ | ″ | https://doi.org/10.1007/978-3-540-28608-0_11 |
66 | ″ | schema:sdDatePublished | 2022-05-20T07:47 |
67 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
68 | ″ | schema:sdPublisher | N392153ff1329493fac27cc8fb2e9e9f7 |
69 | ″ | schema:url | https://doi.org/10.1007/978-3-540-28608-0_11 |
70 | ″ | sgo:license | sg:explorer/license/ |
71 | ″ | sgo:sdDataset | chapters |
72 | ″ | rdf:type | schema:Chapter |
73 | N14e179b950c74dbda0246b1ceb6ca1c1 | schema:name | doi |
74 | ″ | schema:value | 10.1007/978-3-540-28608-0_11 |
75 | ″ | rdf:type | schema:PropertyValue |
76 | N152ad83f692144e1a07dcd8fd2c8ca34 | schema:name | Springer Nature |
77 | ″ | rdf:type | schema:Organisation |
78 | N16f76e3c79bc44e4b18472715f43ae8c | schema:familyName | Rastogi |
79 | ″ | schema:givenName | Rajeev |
80 | ″ | rdf:type | schema:Person |
81 | N2b45baff3af1430598dcecb9da3e4ad7 | rdf:first | N16f76e3c79bc44e4b18472715f43ae8c |
82 | ″ | rdf:rest | rdf:nil |
83 | N392153ff1329493fac27cc8fb2e9e9f7 | schema:name | Springer Nature - SN SciGraph project |
84 | ″ | rdf:type | schema:Organization |
85 | N733d1ebb566b4118acca9d5ec783f46e | rdf:first | Nb7ba90e0445e403bb03b437dd76e2f5d |
86 | ″ | rdf:rest | N2b45baff3af1430598dcecb9da3e4ad7 |
87 | N9c76f0a3ef664a21860cb46f05aeea4a | schema:isbn | 978-3-540-28607-3 |
88 | ″ | ″ | 978-3-540-28608-0 |
89 | ″ | schema:name | Data Stream Management |
90 | ″ | rdf:type | schema:Book |
91 | Nb7ba90e0445e403bb03b437dd76e2f5d | schema:familyName | Gehrke |
92 | ″ | schema:givenName | Johannes |
93 | ″ | rdf:type | schema:Person |
94 | Nd332bcb87b1f4bcd9d8957cbe51ee923 | schema:name | dimensions_id |
95 | ″ | schema:value | pub.1025345274 |
96 | ″ | rdf:type | schema:PropertyValue |
97 | Ne2981e17ab714d4eaa156018b44eef19 | rdf:first | sg:person.011522233557.04 |
98 | ″ | rdf:rest | rdf:nil |
99 | Ne30d380933944166bf10198407d1c5a0 | rdf:first | Neb21a9d15b2c49cd8b8d9446a2abdc7d |
100 | ″ | rdf:rest | N733d1ebb566b4118acca9d5ec783f46e |
101 | Neb21a9d15b2c49cd8b8d9446a2abdc7d | schema:familyName | Garofalakis |
102 | ″ | schema:givenName | Minos |
103 | ″ | rdf:type | schema:Person |
104 | anzsrc-for:08 | schema:inDefinedTermSet | anzsrc-for: |
105 | ″ | schema:name | Information and Computing Sciences |
106 | ″ | rdf:type | schema:DefinedTerm |
107 | anzsrc-for:0801 | schema:inDefinedTermSet | anzsrc-for: |
108 | ″ | schema:name | Artificial Intelligence and Image Processing |
109 | ″ | rdf:type | schema:DefinedTerm |
110 | anzsrc-for:0806 | schema:inDefinedTermSet | anzsrc-for: |
111 | ″ | schema:name | Information Systems |
112 | ″ | rdf:type | schema:DefinedTerm |
113 | sg:person.011522233557.04 | schema:affiliation | grid-institutes:grid.5386.8 |
114 | ″ | schema:familyName | Kleinberg |
115 | ″ | schema:givenName | Jon |
116 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011522233557.04 |
117 | ″ | rdf:type | schema:Person |
118 | grid-institutes:grid.5386.8 | schema:alternateName | Department of Computer Science, Cornell University, 4105B Upson Hall, 14853, Ithaca, NY, USA |
119 | ″ | schema:name | Department of Computer Science, Cornell University, 4105B Upson Hall, 14853, Ithaca, NY, USA |
120 | ″ | rdf:type | schema:Organization |