Toward a Cognitive System Algebra: Application to Facial Expression Learning and Imitation View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2004

AUTHORS

Philippe Gaussier , Ken Prepin , Jacqueline Nadel

ABSTRACT

In this paper, we try to demonstrate the capability of a very simple architecture to learn to recognize and reproduce facial expressions without the innate capability to recognize the facial expressions of others. In the first part, the main properties of an algebra useful to describe architectures devoted to the control of autonomous and embodied “intelligent” systems are described. Next, we propose a very simple architecture and study the conditions for a stable behavior learning. We show the solution relies on the importance of the interactions with another system/agent knowing already a set of emotional expressions. A condition for the learning stability of the proposed architecture is derived. The teacher agent must act as a mirror of the baby agent (and not as a classical teacher). In conclusion, we discuss the limitations of the proposed formalism and encourage people to imagine more powerful theoretical frameworks in order to compare and analyze the different “intelligent” systems that could be developed. More... »

PAGES

243-258

References to SciGraph publications

Book

TITLE

Embodied Artificial Intelligence

ISBN

978-3-540-22484-6
978-3-540-27833-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-27833-7_18

DOI

http://dx.doi.org/10.1007/978-3-540-27833-7_18

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1001253955


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Cergy-Pontoise University", 
          "id": "https://www.grid.ac/institutes/grid.7901.f", 
          "name": [
            "Neuro-cybernetic team, Image and Signal processing Lab., UMR CNRS 8051, Cergy Pontoise University / ENSEA, 6 av du Ponceau, 95014\u00a0Cergy, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gaussier", 
        "givenName": "Philippe", 
        "id": "sg:person.01041272554.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041272554.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cergy-Pontoise University", 
          "id": "https://www.grid.ac/institutes/grid.7901.f", 
          "name": [
            "Neuro-cybernetic team, Image and Signal processing Lab., UMR CNRS 8051, Cergy Pontoise University / ENSEA, 6 av du Ponceau, 95014\u00a0Cergy, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Prepin", 
        "givenName": "Ken", 
        "id": "sg:person.012472563015.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012472563015.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Piti\u00e9-Salp\u00eatri\u00e8re Hospital", 
          "id": "https://www.grid.ac/institutes/grid.411439.a", 
          "name": [
            "UMR CNRS 7593, Hopital la Piti\u00e9 Salp\u00e9tri\u00e8re, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nadel", 
        "givenName": "Jacqueline", 
        "id": "sg:person.0665426200.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0665426200.17"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0921-8890(95)00017-a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005443783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0921-8890(95)00049-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005616328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0028-3932(02)00143-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012547670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0028-3932(02)00143-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012547670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0921-8890(95)00052-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029057226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-015-1320-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046158003", 
          "https://doi.org/10.1007/978-94-015-1320-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-015-1320-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046158003", 
          "https://doi.org/10.1007/978-94-015-1320-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cplx.10015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049133710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3066516", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057906942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1075/is.5.1.04nad", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058230666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/3468.952717", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061157851"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004", 
    "datePublishedReg": "2004-01-01", 
    "description": "In this paper, we try to demonstrate the capability of a very simple architecture to learn to recognize and reproduce facial expressions without the innate capability to recognize the facial expressions of others. In the first part, the main properties of an algebra useful to describe architectures devoted to the control of autonomous and embodied \u201cintelligent\u201d systems are described. Next, we propose a very simple architecture and study the conditions for a stable behavior learning. We show the solution relies on the importance of the interactions with another system/agent knowing already a set of emotional expressions. A condition for the learning stability of the proposed architecture is derived. The teacher agent must act as a mirror of the baby agent (and not as a classical teacher). In conclusion, we discuss the limitations of the proposed formalism and encourage people to imagine more powerful theoretical frameworks in order to compare and analyze the different \u201cintelligent\u201d systems that could be developed.", 
    "editor": [
      {
        "familyName": "Iida", 
        "givenName": "Fumiya", 
        "type": "Person"
      }, 
      {
        "familyName": "Pfeifer", 
        "givenName": "Rolf", 
        "type": "Person"
      }, 
      {
        "familyName": "Steels", 
        "givenName": "Luc", 
        "type": "Person"
      }, 
      {
        "familyName": "Kuniyoshi", 
        "givenName": "Yasuo", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-27833-7_18", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-22484-6", 
        "978-3-540-27833-7"
      ], 
      "name": "Embodied Artificial Intelligence", 
      "type": "Book"
    }, 
    "name": "Toward a Cognitive System Algebra: Application to Facial Expression Learning and Imitation", 
    "pagination": "243-258", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-27833-7_18"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "05f8e9b8d3106f18bc2e34894b923fc6c0333546df7e2060c6151ea9934324e8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1001253955"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-27833-7_18", 
      "https://app.dimensions.ai/details/publication/pub.1001253955"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T21:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000243.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-540-27833-7_18"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-27833-7_18'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-27833-7_18'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-27833-7_18'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-27833-7_18'


 

This table displays all metadata directly associated to this object as RDF triples.

125 TRIPLES      23 PREDICATES      36 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-27833-7_18 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N38a7031b9e034918b316e33665f9ce0a
4 schema:citation sg:pub.10.1007/978-94-015-1320-3
5 https://doi.org/10.1002/cplx.10015
6 https://doi.org/10.1016/0921-8890(95)00017-a
7 https://doi.org/10.1016/0921-8890(95)00049-6
8 https://doi.org/10.1016/0921-8890(95)00052-6
9 https://doi.org/10.1016/s0028-3932(02)00143-4
10 https://doi.org/10.1063/1.3066516
11 https://doi.org/10.1075/is.5.1.04nad
12 https://doi.org/10.1109/3468.952717
13 schema:datePublished 2004
14 schema:datePublishedReg 2004-01-01
15 schema:description In this paper, we try to demonstrate the capability of a very simple architecture to learn to recognize and reproduce facial expressions without the innate capability to recognize the facial expressions of others. In the first part, the main properties of an algebra useful to describe architectures devoted to the control of autonomous and embodied “intelligent” systems are described. Next, we propose a very simple architecture and study the conditions for a stable behavior learning. We show the solution relies on the importance of the interactions with another system/agent knowing already a set of emotional expressions. A condition for the learning stability of the proposed architecture is derived. The teacher agent must act as a mirror of the baby agent (and not as a classical teacher). In conclusion, we discuss the limitations of the proposed formalism and encourage people to imagine more powerful theoretical frameworks in order to compare and analyze the different “intelligent” systems that could be developed.
16 schema:editor N7f5310438c7d4f3fb8978ce02e730739
17 schema:genre chapter
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf Nb46fc752163e4993a3d53c37fd8bd428
21 schema:name Toward a Cognitive System Algebra: Application to Facial Expression Learning and Imitation
22 schema:pagination 243-258
23 schema:productId N10f81c84598f4b5d8fc290210af949b8
24 N3fec6c04988c49eab4076f3434a93746
25 Ne869cc687eb24add9a43c43bd723109b
26 schema:publisher N10ed64fa5d5f4e478edd064ef8018e25
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001253955
28 https://doi.org/10.1007/978-3-540-27833-7_18
29 schema:sdDatePublished 2019-04-15T21:55
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher N7c6984499a824052be748413309b5569
32 schema:url http://link.springer.com/10.1007/978-3-540-27833-7_18
33 sgo:license sg:explorer/license/
34 sgo:sdDataset chapters
35 rdf:type schema:Chapter
36 N10ed64fa5d5f4e478edd064ef8018e25 schema:location Berlin, Heidelberg
37 schema:name Springer Berlin Heidelberg
38 rdf:type schema:Organisation
39 N10f81c84598f4b5d8fc290210af949b8 schema:name readcube_id
40 schema:value 05f8e9b8d3106f18bc2e34894b923fc6c0333546df7e2060c6151ea9934324e8
41 rdf:type schema:PropertyValue
42 N1b1f3c14137046eea9b7cebde13bd8fc rdf:first Nb7781b4d3dfd467dbc96623bf09e843a
43 rdf:rest N4a9424eb90e24870ad61d482b3bc27e1
44 N38a7031b9e034918b316e33665f9ce0a rdf:first sg:person.01041272554.05
45 rdf:rest Nbcfd1b872ab44722940871bc15e60576
46 N3fec6c04988c49eab4076f3434a93746 schema:name doi
47 schema:value 10.1007/978-3-540-27833-7_18
48 rdf:type schema:PropertyValue
49 N4a9424eb90e24870ad61d482b3bc27e1 rdf:first N7e0659cd258940bbad39dc3843f98930
50 rdf:rest rdf:nil
51 N76c8f3d2a48b40c0b403f5009d546138 schema:familyName Pfeifer
52 schema:givenName Rolf
53 rdf:type schema:Person
54 N7c6984499a824052be748413309b5569 schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 N7e0659cd258940bbad39dc3843f98930 schema:familyName Kuniyoshi
57 schema:givenName Yasuo
58 rdf:type schema:Person
59 N7f5310438c7d4f3fb8978ce02e730739 rdf:first Nab9e60c7d5c74512bdd80c6b934b343b
60 rdf:rest N893e8186f47246e0ad114e37934b7d1e
61 N893e8186f47246e0ad114e37934b7d1e rdf:first N76c8f3d2a48b40c0b403f5009d546138
62 rdf:rest N1b1f3c14137046eea9b7cebde13bd8fc
63 Nab9e60c7d5c74512bdd80c6b934b343b schema:familyName Iida
64 schema:givenName Fumiya
65 rdf:type schema:Person
66 Nb46fc752163e4993a3d53c37fd8bd428 schema:isbn 978-3-540-22484-6
67 978-3-540-27833-7
68 schema:name Embodied Artificial Intelligence
69 rdf:type schema:Book
70 Nb7781b4d3dfd467dbc96623bf09e843a schema:familyName Steels
71 schema:givenName Luc
72 rdf:type schema:Person
73 Nbcfd1b872ab44722940871bc15e60576 rdf:first sg:person.012472563015.17
74 rdf:rest Nbf3b0ea6981e4a45a8f50e145badd595
75 Nbf3b0ea6981e4a45a8f50e145badd595 rdf:first sg:person.0665426200.17
76 rdf:rest rdf:nil
77 Ne869cc687eb24add9a43c43bd723109b schema:name dimensions_id
78 schema:value pub.1001253955
79 rdf:type schema:PropertyValue
80 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
81 schema:name Information and Computing Sciences
82 rdf:type schema:DefinedTerm
83 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
84 schema:name Artificial Intelligence and Image Processing
85 rdf:type schema:DefinedTerm
86 sg:person.01041272554.05 schema:affiliation https://www.grid.ac/institutes/grid.7901.f
87 schema:familyName Gaussier
88 schema:givenName Philippe
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041272554.05
90 rdf:type schema:Person
91 sg:person.012472563015.17 schema:affiliation https://www.grid.ac/institutes/grid.7901.f
92 schema:familyName Prepin
93 schema:givenName Ken
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012472563015.17
95 rdf:type schema:Person
96 sg:person.0665426200.17 schema:affiliation https://www.grid.ac/institutes/grid.411439.a
97 schema:familyName Nadel
98 schema:givenName Jacqueline
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0665426200.17
100 rdf:type schema:Person
101 sg:pub.10.1007/978-94-015-1320-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046158003
102 https://doi.org/10.1007/978-94-015-1320-3
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1002/cplx.10015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049133710
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/0921-8890(95)00017-a schema:sameAs https://app.dimensions.ai/details/publication/pub.1005443783
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/0921-8890(95)00049-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005616328
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/0921-8890(95)00052-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029057226
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/s0028-3932(02)00143-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012547670
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1063/1.3066516 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057906942
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1075/is.5.1.04nad schema:sameAs https://app.dimensions.ai/details/publication/pub.1058230666
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1109/3468.952717 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061157851
119 rdf:type schema:CreativeWork
120 https://www.grid.ac/institutes/grid.411439.a schema:alternateName Pitié-Salpêtrière Hospital
121 schema:name UMR CNRS 7593, Hopital la Pitié Salpétrière, Paris, France
122 rdf:type schema:Organization
123 https://www.grid.ac/institutes/grid.7901.f schema:alternateName Cergy-Pontoise University
124 schema:name Neuro-cybernetic team, Image and Signal processing Lab., UMR CNRS 8051, Cergy Pontoise University / ENSEA, 6 av du Ponceau, 95014 Cergy, France
125 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...