Toward a Cognitive System Algebra: Application to Facial Expression Learning and Imitation View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2004

AUTHORS

Philippe Gaussier , Ken Prepin , Jacqueline Nadel

ABSTRACT

In this paper, we try to demonstrate the capability of a very simple architecture to learn to recognize and reproduce facial expressions without the innate capability to recognize the facial expressions of others. In the first part, the main properties of an algebra useful to describe architectures devoted to the control of autonomous and embodied “intelligent” systems are described. Next, we propose a very simple architecture and study the conditions for a stable behavior learning. We show the solution relies on the importance of the interactions with another system/agent knowing already a set of emotional expressions. A condition for the learning stability of the proposed architecture is derived. The teacher agent must act as a mirror of the baby agent (and not as a classical teacher). In conclusion, we discuss the limitations of the proposed formalism and encourage people to imagine more powerful theoretical frameworks in order to compare and analyze the different “intelligent” systems that could be developed. More... »

PAGES

243-258

References to SciGraph publications

Book

TITLE

Embodied Artificial Intelligence

ISBN

978-3-540-22484-6
978-3-540-27833-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-27833-7_18

DOI

http://dx.doi.org/10.1007/978-3-540-27833-7_18

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1001253955


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Cergy-Pontoise University", 
          "id": "https://www.grid.ac/institutes/grid.7901.f", 
          "name": [
            "Neuro-cybernetic team, Image and Signal processing Lab., UMR CNRS 8051, Cergy Pontoise University / ENSEA, 6 av du Ponceau, 95014\u00a0Cergy, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gaussier", 
        "givenName": "Philippe", 
        "id": "sg:person.01041272554.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041272554.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cergy-Pontoise University", 
          "id": "https://www.grid.ac/institutes/grid.7901.f", 
          "name": [
            "Neuro-cybernetic team, Image and Signal processing Lab., UMR CNRS 8051, Cergy Pontoise University / ENSEA, 6 av du Ponceau, 95014\u00a0Cergy, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Prepin", 
        "givenName": "Ken", 
        "id": "sg:person.012472563015.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012472563015.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Piti\u00e9-Salp\u00eatri\u00e8re Hospital", 
          "id": "https://www.grid.ac/institutes/grid.411439.a", 
          "name": [
            "UMR CNRS 7593, Hopital la Piti\u00e9 Salp\u00e9tri\u00e8re, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nadel", 
        "givenName": "Jacqueline", 
        "id": "sg:person.0665426200.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0665426200.17"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0921-8890(95)00017-a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005443783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0921-8890(95)00049-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005616328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0028-3932(02)00143-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012547670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0028-3932(02)00143-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012547670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0921-8890(95)00052-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029057226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-015-1320-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046158003", 
          "https://doi.org/10.1007/978-94-015-1320-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-015-1320-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046158003", 
          "https://doi.org/10.1007/978-94-015-1320-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cplx.10015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049133710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3066516", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057906942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1075/is.5.1.04nad", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058230666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/3468.952717", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061157851"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004", 
    "datePublishedReg": "2004-01-01", 
    "description": "In this paper, we try to demonstrate the capability of a very simple architecture to learn to recognize and reproduce facial expressions without the innate capability to recognize the facial expressions of others. In the first part, the main properties of an algebra useful to describe architectures devoted to the control of autonomous and embodied \u201cintelligent\u201d systems are described. Next, we propose a very simple architecture and study the conditions for a stable behavior learning. We show the solution relies on the importance of the interactions with another system/agent knowing already a set of emotional expressions. A condition for the learning stability of the proposed architecture is derived. The teacher agent must act as a mirror of the baby agent (and not as a classical teacher). In conclusion, we discuss the limitations of the proposed formalism and encourage people to imagine more powerful theoretical frameworks in order to compare and analyze the different \u201cintelligent\u201d systems that could be developed.", 
    "editor": [
      {
        "familyName": "Iida", 
        "givenName": "Fumiya", 
        "type": "Person"
      }, 
      {
        "familyName": "Pfeifer", 
        "givenName": "Rolf", 
        "type": "Person"
      }, 
      {
        "familyName": "Steels", 
        "givenName": "Luc", 
        "type": "Person"
      }, 
      {
        "familyName": "Kuniyoshi", 
        "givenName": "Yasuo", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-27833-7_18", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-22484-6", 
        "978-3-540-27833-7"
      ], 
      "name": "Embodied Artificial Intelligence", 
      "type": "Book"
    }, 
    "name": "Toward a Cognitive System Algebra: Application to Facial Expression Learning and Imitation", 
    "pagination": "243-258", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-27833-7_18"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "05f8e9b8d3106f18bc2e34894b923fc6c0333546df7e2060c6151ea9934324e8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1001253955"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-27833-7_18", 
      "https://app.dimensions.ai/details/publication/pub.1001253955"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T21:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000243.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-540-27833-7_18"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-27833-7_18'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-27833-7_18'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-27833-7_18'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-27833-7_18'


 

This table displays all metadata directly associated to this object as RDF triples.

125 TRIPLES      23 PREDICATES      36 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-27833-7_18 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N338506b200744d5f99296bdf0518d2ad
4 schema:citation sg:pub.10.1007/978-94-015-1320-3
5 https://doi.org/10.1002/cplx.10015
6 https://doi.org/10.1016/0921-8890(95)00017-a
7 https://doi.org/10.1016/0921-8890(95)00049-6
8 https://doi.org/10.1016/0921-8890(95)00052-6
9 https://doi.org/10.1016/s0028-3932(02)00143-4
10 https://doi.org/10.1063/1.3066516
11 https://doi.org/10.1075/is.5.1.04nad
12 https://doi.org/10.1109/3468.952717
13 schema:datePublished 2004
14 schema:datePublishedReg 2004-01-01
15 schema:description In this paper, we try to demonstrate the capability of a very simple architecture to learn to recognize and reproduce facial expressions without the innate capability to recognize the facial expressions of others. In the first part, the main properties of an algebra useful to describe architectures devoted to the control of autonomous and embodied “intelligent” systems are described. Next, we propose a very simple architecture and study the conditions for a stable behavior learning. We show the solution relies on the importance of the interactions with another system/agent knowing already a set of emotional expressions. A condition for the learning stability of the proposed architecture is derived. The teacher agent must act as a mirror of the baby agent (and not as a classical teacher). In conclusion, we discuss the limitations of the proposed formalism and encourage people to imagine more powerful theoretical frameworks in order to compare and analyze the different “intelligent” systems that could be developed.
16 schema:editor N92c1c5d1d78140ada4a5c848d243d26a
17 schema:genre chapter
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf Nb644a7cb1e26417db1c1fef5e51641e4
21 schema:name Toward a Cognitive System Algebra: Application to Facial Expression Learning and Imitation
22 schema:pagination 243-258
23 schema:productId N12e914cbb36c4faca41a40dd81122eb9
24 Nad22817cc4ec4cd4b59eb169598ee2d5
25 Nf215c1319241495a8172a13f1383dc8d
26 schema:publisher N71072a78060948309ed6b6cc6b5f5153
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001253955
28 https://doi.org/10.1007/978-3-540-27833-7_18
29 schema:sdDatePublished 2019-04-15T21:55
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher Nd444830f0b2b4382ad3667fd58be3849
32 schema:url http://link.springer.com/10.1007/978-3-540-27833-7_18
33 sgo:license sg:explorer/license/
34 sgo:sdDataset chapters
35 rdf:type schema:Chapter
36 N0d7148b9710b402bac904c6445afcaa1 schema:familyName Iida
37 schema:givenName Fumiya
38 rdf:type schema:Person
39 N12e914cbb36c4faca41a40dd81122eb9 schema:name doi
40 schema:value 10.1007/978-3-540-27833-7_18
41 rdf:type schema:PropertyValue
42 N338506b200744d5f99296bdf0518d2ad rdf:first sg:person.01041272554.05
43 rdf:rest N9a646fb6dcf7458cbebd07f3fd35f4a1
44 N59aa95826e7647ebbde98dbc04d230eb rdf:first sg:person.0665426200.17
45 rdf:rest rdf:nil
46 N71072a78060948309ed6b6cc6b5f5153 schema:location Berlin, Heidelberg
47 schema:name Springer Berlin Heidelberg
48 rdf:type schema:Organisation
49 N92c1c5d1d78140ada4a5c848d243d26a rdf:first N0d7148b9710b402bac904c6445afcaa1
50 rdf:rest Ned159058de9740c6b14d17b43ff20745
51 N9a646fb6dcf7458cbebd07f3fd35f4a1 rdf:first sg:person.012472563015.17
52 rdf:rest N59aa95826e7647ebbde98dbc04d230eb
53 N9cca6925cba8413aa9e30a3b14f4ecc3 schema:familyName Kuniyoshi
54 schema:givenName Yasuo
55 rdf:type schema:Person
56 Na5b4bc497bc249689a29fd7777d673af schema:familyName Steels
57 schema:givenName Luc
58 rdf:type schema:Person
59 Nad22817cc4ec4cd4b59eb169598ee2d5 schema:name dimensions_id
60 schema:value pub.1001253955
61 rdf:type schema:PropertyValue
62 Nb393181c51144bcd8cca0f86369095bb schema:familyName Pfeifer
63 schema:givenName Rolf
64 rdf:type schema:Person
65 Nb644a7cb1e26417db1c1fef5e51641e4 schema:isbn 978-3-540-22484-6
66 978-3-540-27833-7
67 schema:name Embodied Artificial Intelligence
68 rdf:type schema:Book
69 Nca136453a46948369909ca480e4f53fe rdf:first Na5b4bc497bc249689a29fd7777d673af
70 rdf:rest Nf789e8065ab34ac5981022ccf5856e89
71 Nd444830f0b2b4382ad3667fd58be3849 schema:name Springer Nature - SN SciGraph project
72 rdf:type schema:Organization
73 Ned159058de9740c6b14d17b43ff20745 rdf:first Nb393181c51144bcd8cca0f86369095bb
74 rdf:rest Nca136453a46948369909ca480e4f53fe
75 Nf215c1319241495a8172a13f1383dc8d schema:name readcube_id
76 schema:value 05f8e9b8d3106f18bc2e34894b923fc6c0333546df7e2060c6151ea9934324e8
77 rdf:type schema:PropertyValue
78 Nf789e8065ab34ac5981022ccf5856e89 rdf:first N9cca6925cba8413aa9e30a3b14f4ecc3
79 rdf:rest rdf:nil
80 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
81 schema:name Information and Computing Sciences
82 rdf:type schema:DefinedTerm
83 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
84 schema:name Artificial Intelligence and Image Processing
85 rdf:type schema:DefinedTerm
86 sg:person.01041272554.05 schema:affiliation https://www.grid.ac/institutes/grid.7901.f
87 schema:familyName Gaussier
88 schema:givenName Philippe
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041272554.05
90 rdf:type schema:Person
91 sg:person.012472563015.17 schema:affiliation https://www.grid.ac/institutes/grid.7901.f
92 schema:familyName Prepin
93 schema:givenName Ken
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012472563015.17
95 rdf:type schema:Person
96 sg:person.0665426200.17 schema:affiliation https://www.grid.ac/institutes/grid.411439.a
97 schema:familyName Nadel
98 schema:givenName Jacqueline
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0665426200.17
100 rdf:type schema:Person
101 sg:pub.10.1007/978-94-015-1320-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046158003
102 https://doi.org/10.1007/978-94-015-1320-3
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1002/cplx.10015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049133710
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/0921-8890(95)00017-a schema:sameAs https://app.dimensions.ai/details/publication/pub.1005443783
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/0921-8890(95)00049-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005616328
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/0921-8890(95)00052-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029057226
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/s0028-3932(02)00143-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012547670
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1063/1.3066516 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057906942
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1075/is.5.1.04nad schema:sameAs https://app.dimensions.ai/details/publication/pub.1058230666
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1109/3468.952717 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061157851
119 rdf:type schema:CreativeWork
120 https://www.grid.ac/institutes/grid.411439.a schema:alternateName Pitié-Salpêtrière Hospital
121 schema:name UMR CNRS 7593, Hopital la Pitié Salpétrière, Paris, France
122 rdf:type schema:Organization
123 https://www.grid.ac/institutes/grid.7901.f schema:alternateName Cergy-Pontoise University
124 schema:name Neuro-cybernetic team, Image and Signal processing Lab., UMR CNRS 8051, Cergy Pontoise University / ENSEA, 6 av du Ponceau, 95014 Cergy, France
125 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...