Ontology type: schema:Chapter
2004
AUTHORSPiotr Berman , Bhaskar DasGupta , Eduardo Sontag
ABSTRACTIn this paper we investigate the computational complexities of a combinatorial problem that arises in the reverse engineering of protein and gene networks. Our contributions are as follows: We abstract a combinatorial version of the problem and observe that this is “equivalent” to the set multicover problem when the “coverage” factor k is a function of the number of elements n of the universe. An important special case for our application is the case in which k=n–1.We observe that the standard greedy algorithm produces an approximation ratio of Ω(log n) even if k is “large” i.e.k=n–c for some constant c>0.Let 1 More... »
PAGES39-50
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
ISBN
978-3-540-22894-3
978-3-540-27821-4
http://scigraph.springernature.com/pub.10.1007/978-3-540-27821-4_4
DOIhttp://dx.doi.org/10.1007/978-3-540-27821-4_4
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1052672908
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Computation Theory and Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Computer Science and Engineering, Pennsylvania State University, 16802, University Park, PA, USA",
"id": "http://www.grid.ac/institutes/grid.29857.31",
"name": [
"Department of Computer Science and Engineering, Pennsylvania State University, 16802, University Park, PA, USA"
],
"type": "Organization"
},
"familyName": "Berman",
"givenName": "Piotr",
"id": "sg:person.01274506210.27",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274506210.27"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Computer Science, University of Illinois at Chicago, 60607-7053, Chicago, IL, USA",
"id": "http://www.grid.ac/institutes/grid.185648.6",
"name": [
"Department of Computer Science, University of Illinois at Chicago, 60607-7053, Chicago, IL, USA"
],
"type": "Organization"
},
"familyName": "DasGupta",
"givenName": "Bhaskar",
"id": "sg:person.0763403270.10",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763403270.10"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Mathematics, Rutgers University, 08903, New Brunswick, NJ, USA",
"id": "http://www.grid.ac/institutes/grid.430387.b",
"name": [
"Department of Mathematics, Rutgers University, 08903, New Brunswick, NJ, USA"
],
"type": "Organization"
},
"familyName": "Sontag",
"givenName": "Eduardo",
"id": "sg:person.0714217520.83",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0714217520.83"
],
"type": "Person"
}
],
"datePublished": "2004",
"datePublishedReg": "2004-01-01",
"description": "In this paper we investigate the computational complexities of a combinatorial problem that arises in the reverse engineering of protein and gene networks. Our contributions are as follows: \nWe abstract a combinatorial version of the problem and observe that this is \u201cequivalent\u201d to the set multicover problem when the \u201ccoverage\u201d factor k is a function of the number of elements n of the universe. An important special case for our application is the case in which k=n\u20131.We observe that the standard greedy algorithm produces an approximation ratio of \u03a9(log n) even if k is \u201clarge\u201d i.e.k=n\u2013c for some constant c>0.Let 1
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-27821-4_4'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-27821-4_4'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-27821-4_4'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-27821-4_4'
This table displays all metadata directly associated to this object as RDF triples.
145 TRIPLES
23 PREDICATES
76 URIs
69 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-540-27821-4_4 | schema:about | anzsrc-for:08 |
2 | ″ | ″ | anzsrc-for:0802 |
3 | ″ | schema:author | N8178f3234bb54776bcf4583663aac026 |
4 | ″ | schema:datePublished | 2004 |
5 | ″ | schema:datePublishedReg | 2004-01-01 |
6 | ″ | schema:description | In this paper we investigate the computational complexities of a combinatorial problem that arises in the reverse engineering of protein and gene networks. Our contributions are as follows: We abstract a combinatorial version of the problem and observe that this is “equivalent” to the set multicover problem when the “coverage” factor k is a function of the number of elements n of the universe. An important special case for our application is the case in which k=n–1.We observe that the standard greedy algorithm produces an approximation ratio of Ω(log n) even if k is “large” i.e.k=n–c for some constant c>0.Let 1<a<n denotes the maximum number of elements in any given set in our set multicover problem. Then, we show that a non-trivial analysis of a simple randomized polynomial-time approximation algorithm for this problem yields an expected approximation ratio E[r(a,k)] that is an increasing function of a/k. The behavior of E[r(a,k)] is “roughly” as follows: it is about ln (a/k) when a/k is at least about e2≈ 7.39, and for smaller values of a/k it decreases towards 2 exponentially with increasing k with lima/ k→0E[r(a,k)]≤ 2. Our randomized algorithm is a cascade of a deterministic and a randomized rounding step parameterized by a quantity β followed by a greedy solution for the remaining problem. |
7 | ″ | schema:editor | N2b6fdc0ccc9542688ac40d43a4662f7e |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | N962804d3f0104b4295d0b20ad7ed6691 |
12 | ″ | schema:keywords | Ln |
13 | ″ | ″ | algorithm |
14 | ″ | ″ | analysis |
15 | ″ | ″ | applications |
16 | ″ | ″ | approximation algorithm |
17 | ″ | ″ | approximation ratio |
18 | ″ | ″ | behavior |
19 | ″ | ″ | cascade |
20 | ″ | ″ | cases |
21 | ″ | ″ | combinatorial problems |
22 | ″ | ″ | combinatorial version |
23 | ″ | ″ | complexity |
24 | ″ | ″ | computational complexity |
25 | ″ | ″ | contribution |
26 | ″ | ″ | coverage |
27 | ″ | ″ | deterministic |
28 | ″ | ″ | elements |
29 | ″ | ″ | elements N |
30 | ″ | ″ | engineering |
31 | ″ | ″ | engineering of proteins |
32 | ″ | ″ | expected approximation ratio |
33 | ″ | ″ | factor K |
34 | ″ | ″ | function |
35 | ″ | ″ | gene networks |
36 | ″ | ″ | greedy algorithm |
37 | ″ | ″ | greedy solution |
38 | ″ | ″ | important special case |
39 | ″ | ″ | maximum number |
40 | ″ | ″ | multicover problem |
41 | ″ | ″ | network |
42 | ″ | ″ | non-trivial analysis |
43 | ″ | ″ | number |
44 | ″ | ″ | paper |
45 | ″ | ″ | polynomial-time approximation algorithm |
46 | ″ | ″ | problem |
47 | ″ | ″ | protein |
48 | ″ | ″ | quantity β |
49 | ″ | ″ | randomized approximation algorithm |
50 | ″ | ″ | ratio |
51 | ″ | ″ | reverse engineering |
52 | ″ | ″ | set |
53 | ″ | ″ | set multicover problem |
54 | ″ | ″ | small values |
55 | ″ | ″ | solution |
56 | ″ | ″ | special case |
57 | ″ | ″ | standard greedy algorithm |
58 | ″ | ″ | step |
59 | ″ | ″ | universe |
60 | ″ | ″ | values |
61 | ″ | ″ | version |
62 | ″ | schema:name | Randomized Approximation Algorithms for Set Multicover Problems with Applications to Reverse Engineering of Protein and Gene Networks |
63 | ″ | schema:pagination | 39-50 |
64 | ″ | schema:productId | N1a17d818c701468390856fe1cd943a64 |
65 | ″ | ″ | N28ae9f74d10e4c8395d69b3f0ac6e125 |
66 | ″ | schema:publisher | N4a310ee775784213ad9deab3d4c8e899 |
67 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1052672908 |
68 | ″ | ″ | https://doi.org/10.1007/978-3-540-27821-4_4 |
69 | ″ | schema:sdDatePublished | 2022-05-20T07:43 |
70 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
71 | ″ | schema:sdPublisher | N961269c7368049f69d003ac1c11326c7 |
72 | ″ | schema:url | https://doi.org/10.1007/978-3-540-27821-4_4 |
73 | ″ | sgo:license | sg:explorer/license/ |
74 | ″ | sgo:sdDataset | chapters |
75 | ″ | rdf:type | schema:Chapter |
76 | N0290b79ec3ca4c2381c56997dfc4e7bd | rdf:first | N96447c2d3aa94efbb3c9d182205e8565 |
77 | ″ | rdf:rest | rdf:nil |
78 | N0f9917cde2dc485cacf1c03c4be6b31d | rdf:first | sg:person.0763403270.10 |
79 | ″ | rdf:rest | N3fc03a27c61946e4890deed487b3e2c1 |
80 | N1809ad4bfa5a49aabaa178f476b2970c | schema:familyName | Khanna |
81 | ″ | schema:givenName | Sanjeev |
82 | ″ | rdf:type | schema:Person |
83 | N1a17d818c701468390856fe1cd943a64 | schema:name | dimensions_id |
84 | ″ | schema:value | pub.1052672908 |
85 | ″ | rdf:type | schema:PropertyValue |
86 | N28ae9f74d10e4c8395d69b3f0ac6e125 | schema:name | doi |
87 | ″ | schema:value | 10.1007/978-3-540-27821-4_4 |
88 | ″ | rdf:type | schema:PropertyValue |
89 | N2941135cb8774c0bac4d90e4ca8ea928 | schema:familyName | Rolim |
90 | ″ | schema:givenName | José D. P. |
91 | ″ | rdf:type | schema:Person |
92 | N2b6fdc0ccc9542688ac40d43a4662f7e | rdf:first | N5296e120abf9460ca11a4d6b6e534b5c |
93 | ″ | rdf:rest | N98e500c08a9e446eb7f9dc5c7b208837 |
94 | N3fc03a27c61946e4890deed487b3e2c1 | rdf:first | sg:person.0714217520.83 |
95 | ″ | rdf:rest | rdf:nil |
96 | N4a310ee775784213ad9deab3d4c8e899 | schema:name | Springer Nature |
97 | ″ | rdf:type | schema:Organisation |
98 | N5296e120abf9460ca11a4d6b6e534b5c | schema:familyName | Jansen |
99 | ″ | schema:givenName | Klaus |
100 | ″ | rdf:type | schema:Person |
101 | N8178f3234bb54776bcf4583663aac026 | rdf:first | sg:person.01274506210.27 |
102 | ″ | rdf:rest | N0f9917cde2dc485cacf1c03c4be6b31d |
103 | N961269c7368049f69d003ac1c11326c7 | schema:name | Springer Nature - SN SciGraph project |
104 | ″ | rdf:type | schema:Organization |
105 | N962804d3f0104b4295d0b20ad7ed6691 | schema:isbn | 978-3-540-22894-3 |
106 | ″ | ″ | 978-3-540-27821-4 |
107 | ″ | schema:name | Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques |
108 | ″ | rdf:type | schema:Book |
109 | N96447c2d3aa94efbb3c9d182205e8565 | schema:familyName | Ron |
110 | ″ | schema:givenName | Dana |
111 | ″ | rdf:type | schema:Person |
112 | N98e500c08a9e446eb7f9dc5c7b208837 | rdf:first | N1809ad4bfa5a49aabaa178f476b2970c |
113 | ″ | rdf:rest | Nf2e4e6859d9f4705a321ea37be4afdee |
114 | Nf2e4e6859d9f4705a321ea37be4afdee | rdf:first | N2941135cb8774c0bac4d90e4ca8ea928 |
115 | ″ | rdf:rest | N0290b79ec3ca4c2381c56997dfc4e7bd |
116 | anzsrc-for:08 | schema:inDefinedTermSet | anzsrc-for: |
117 | ″ | schema:name | Information and Computing Sciences |
118 | ″ | rdf:type | schema:DefinedTerm |
119 | anzsrc-for:0802 | schema:inDefinedTermSet | anzsrc-for: |
120 | ″ | schema:name | Computation Theory and Mathematics |
121 | ″ | rdf:type | schema:DefinedTerm |
122 | sg:person.01274506210.27 | schema:affiliation | grid-institutes:grid.29857.31 |
123 | ″ | schema:familyName | Berman |
124 | ″ | schema:givenName | Piotr |
125 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274506210.27 |
126 | ″ | rdf:type | schema:Person |
127 | sg:person.0714217520.83 | schema:affiliation | grid-institutes:grid.430387.b |
128 | ″ | schema:familyName | Sontag |
129 | ″ | schema:givenName | Eduardo |
130 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0714217520.83 |
131 | ″ | rdf:type | schema:Person |
132 | sg:person.0763403270.10 | schema:affiliation | grid-institutes:grid.185648.6 |
133 | ″ | schema:familyName | DasGupta |
134 | ″ | schema:givenName | Bhaskar |
135 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763403270.10 |
136 | ″ | rdf:type | schema:Person |
137 | grid-institutes:grid.185648.6 | schema:alternateName | Department of Computer Science, University of Illinois at Chicago, 60607-7053, Chicago, IL, USA |
138 | ″ | schema:name | Department of Computer Science, University of Illinois at Chicago, 60607-7053, Chicago, IL, USA |
139 | ″ | rdf:type | schema:Organization |
140 | grid-institutes:grid.29857.31 | schema:alternateName | Department of Computer Science and Engineering, Pennsylvania State University, 16802, University Park, PA, USA |
141 | ″ | schema:name | Department of Computer Science and Engineering, Pennsylvania State University, 16802, University Park, PA, USA |
142 | ″ | rdf:type | schema:Organization |
143 | grid-institutes:grid.430387.b | schema:alternateName | Department of Mathematics, Rutgers University, 08903, New Brunswick, NJ, USA |
144 | ″ | schema:name | Department of Mathematics, Rutgers University, 08903, New Brunswick, NJ, USA |
145 | ″ | rdf:type | schema:Organization |