Ontology type: schema:Chapter
2004
AUTHORSAnthony Whitehead , Prosenjit Bose , Robert Laganiere
ABSTRACTThere has been much work concentrated on creating accurate shot boundary detection algorithms in recent years. However a truly accurate method of cut detection still eludes researchers in general. In this work we present a scheme based on stable feature tracking for inter frame differencing. Furthermore, we present a method to stabilize the differences and automatically detect a global threshold to achieve a high detection rate. We compare our scheme against other cut detection techniques on a variety of data sources that have been specifically selected because of the difficulties they present due to quick motion, highly edited sequences and computer-generated effects. More... »
PAGES410-418
Image and Video Retrieval
ISBN
978-3-540-22539-3
978-3-540-27814-6
http://scigraph.springernature.com/pub.10.1007/978-3-540-27814-6_49
DOIhttp://dx.doi.org/10.1007/978-3-540-27814-6_49
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1039070569
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Artificial Intelligence and Image Processing",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Carleton University",
"id": "https://www.grid.ac/institutes/grid.34428.39",
"name": [
"School Computer Science, Carleton University, Ottawa, Ontario, Canada"
],
"type": "Organization"
},
"familyName": "Whitehead",
"givenName": "Anthony",
"id": "sg:person.014130767235.52",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014130767235.52"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Carleton University",
"id": "https://www.grid.ac/institutes/grid.34428.39",
"name": [
"School Computer Science, Carleton University, Ottawa, Ontario, Canada"
],
"type": "Organization"
},
"familyName": "Bose",
"givenName": "Prosenjit",
"id": "sg:person.015631132513.15",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015631132513.15"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Ottawa",
"id": "https://www.grid.ac/institutes/grid.28046.38",
"name": [
"School of Information Technology and Engineering, University of Ottawa, Ottawa, Ontario, Canada"
],
"type": "Organization"
},
"familyName": "Laganiere",
"givenName": "Robert",
"id": "sg:person.01144533722.06",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144533722.06"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1117/12.373569",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003287427"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1145/265563.265572",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003914227"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-72283-7_33",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015095020",
"https://doi.org/10.1007/978-3-642-72283-7_33"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1117/12.171773",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020770917"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01261224",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031284122",
"https://doi.org/10.1007/bf01261224"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01261224",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031284122",
"https://doi.org/10.1007/bf01261224"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s005300050115",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035010391",
"https://doi.org/10.1007/s005300050115"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/76.633496",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061222122"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1142/s021946780100027x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062993591"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1145/217279.215266",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1098942010"
],
"type": "CreativeWork"
}
],
"datePublished": "2004",
"datePublishedReg": "2004-01-01",
"description": "There has been much work concentrated on creating accurate shot boundary detection algorithms in recent years. However a truly accurate method of cut detection still eludes researchers in general. In this work we present a scheme based on stable feature tracking for inter frame differencing. Furthermore, we present a method to stabilize the differences and automatically detect a global threshold to achieve a high detection rate. We compare our scheme against other cut detection techniques on a variety of data sources that have been specifically selected because of the difficulties they present due to quick motion, highly edited sequences and computer-generated effects.",
"editor": [
{
"familyName": "Enser",
"givenName": "Peter",
"type": "Person"
},
{
"familyName": "Kompatsiaris",
"givenName": "Yiannis",
"type": "Person"
},
{
"familyName": "O\u2019Connor",
"givenName": "Noel E.",
"type": "Person"
},
{
"familyName": "Smeaton",
"givenName": "Alan F.",
"type": "Person"
},
{
"familyName": "Smeulders",
"givenName": "Arnold W. M.",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-540-27814-6_49",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-540-22539-3",
"978-3-540-27814-6"
],
"name": "Image and Video Retrieval",
"type": "Book"
},
"name": "Feature Based Cut Detection with Automatic Threshold Selection",
"pagination": "410-418",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1039070569"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-540-27814-6_49"
]
},
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"ba1ca881010b8f9f04ef6fbef4cda6b69570246a0658f551503237d4d4ad1766"
]
}
],
"publisher": {
"location": "Berlin, Heidelberg",
"name": "Springer Berlin Heidelberg",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-540-27814-6_49",
"https://app.dimensions.ai/details/publication/pub.1039070569"
],
"sdDataset": "chapters",
"sdDatePublished": "2019-04-16T08:17",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87094_00000001.jsonl",
"type": "Chapter",
"url": "https://link.springer.com/10.1007%2F978-3-540-27814-6_49"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-27814-6_49'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-27814-6_49'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-27814-6_49'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-27814-6_49'
This table displays all metadata directly associated to this object as RDF triples.
132 TRIPLES
23 PREDICATES
36 URIs
20 LITERALS
8 BLANK NODES