Feature Based Cut Detection with Automatic Threshold Selection View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2004

AUTHORS

Anthony Whitehead , Prosenjit Bose , Robert Laganiere

ABSTRACT

There has been much work concentrated on creating accurate shot boundary detection algorithms in recent years. However a truly accurate method of cut detection still eludes researchers in general. In this work we present a scheme based on stable feature tracking for inter frame differencing. Furthermore, we present a method to stabilize the differences and automatically detect a global threshold to achieve a high detection rate. We compare our scheme against other cut detection techniques on a variety of data sources that have been specifically selected because of the difficulties they present due to quick motion, highly edited sequences and computer-generated effects. More... »

PAGES

410-418

Book

TITLE

Image and Video Retrieval

ISBN

978-3-540-22539-3
978-3-540-27814-6

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-27814-6_49

DOI

http://dx.doi.org/10.1007/978-3-540-27814-6_49

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1039070569


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Carleton University", 
          "id": "https://www.grid.ac/institutes/grid.34428.39", 
          "name": [
            "School Computer Science, Carleton University, Ottawa, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Whitehead", 
        "givenName": "Anthony", 
        "id": "sg:person.014130767235.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014130767235.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Carleton University", 
          "id": "https://www.grid.ac/institutes/grid.34428.39", 
          "name": [
            "School Computer Science, Carleton University, Ottawa, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bose", 
        "givenName": "Prosenjit", 
        "id": "sg:person.015631132513.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015631132513.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Ottawa", 
          "id": "https://www.grid.ac/institutes/grid.28046.38", 
          "name": [
            "School of Information Technology and Engineering, University of Ottawa, Ottawa, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Laganiere", 
        "givenName": "Robert", 
        "id": "sg:person.01144533722.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144533722.06"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1117/12.373569", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003287427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/265563.265572", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003914227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-72283-7_33", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015095020", 
          "https://doi.org/10.1007/978-3-642-72283-7_33"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.171773", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020770917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01261224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031284122", 
          "https://doi.org/10.1007/bf01261224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01261224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031284122", 
          "https://doi.org/10.1007/bf01261224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s005300050115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035010391", 
          "https://doi.org/10.1007/s005300050115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/76.633496", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061222122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s021946780100027x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062993591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/217279.215266", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098942010"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004", 
    "datePublishedReg": "2004-01-01", 
    "description": "There has been much work concentrated on creating accurate shot boundary detection algorithms in recent years. However a truly accurate method of cut detection still eludes researchers in general. In this work we present a scheme based on stable feature tracking for inter frame differencing. Furthermore, we present a method to stabilize the differences and automatically detect a global threshold to achieve a high detection rate. We compare our scheme against other cut detection techniques on a variety of data sources that have been specifically selected because of the difficulties they present due to quick motion, highly edited sequences and computer-generated effects.", 
    "editor": [
      {
        "familyName": "Enser", 
        "givenName": "Peter", 
        "type": "Person"
      }, 
      {
        "familyName": "Kompatsiaris", 
        "givenName": "Yiannis", 
        "type": "Person"
      }, 
      {
        "familyName": "O\u2019Connor", 
        "givenName": "Noel E.", 
        "type": "Person"
      }, 
      {
        "familyName": "Smeaton", 
        "givenName": "Alan F.", 
        "type": "Person"
      }, 
      {
        "familyName": "Smeulders", 
        "givenName": "Arnold W. M.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-27814-6_49", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-22539-3", 
        "978-3-540-27814-6"
      ], 
      "name": "Image and Video Retrieval", 
      "type": "Book"
    }, 
    "name": "Feature Based Cut Detection with Automatic Threshold Selection", 
    "pagination": "410-418", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1039070569"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-27814-6_49"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ba1ca881010b8f9f04ef6fbef4cda6b69570246a0658f551503237d4d4ad1766"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-27814-6_49", 
      "https://app.dimensions.ai/details/publication/pub.1039070569"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T08:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87094_00000001.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-540-27814-6_49"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-27814-6_49'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-27814-6_49'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-27814-6_49'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-27814-6_49'


 

This table displays all metadata directly associated to this object as RDF triples.

132 TRIPLES      23 PREDICATES      36 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-27814-6_49 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N944ff72998784540b7147ea4d7dc6f04
4 schema:citation sg:pub.10.1007/978-3-642-72283-7_33
5 sg:pub.10.1007/bf01261224
6 sg:pub.10.1007/s005300050115
7 https://doi.org/10.1109/76.633496
8 https://doi.org/10.1117/12.171773
9 https://doi.org/10.1117/12.373569
10 https://doi.org/10.1142/s021946780100027x
11 https://doi.org/10.1145/217279.215266
12 https://doi.org/10.1145/265563.265572
13 schema:datePublished 2004
14 schema:datePublishedReg 2004-01-01
15 schema:description There has been much work concentrated on creating accurate shot boundary detection algorithms in recent years. However a truly accurate method of cut detection still eludes researchers in general. In this work we present a scheme based on stable feature tracking for inter frame differencing. Furthermore, we present a method to stabilize the differences and automatically detect a global threshold to achieve a high detection rate. We compare our scheme against other cut detection techniques on a variety of data sources that have been specifically selected because of the difficulties they present due to quick motion, highly edited sequences and computer-generated effects.
16 schema:editor Nf9ba608722e24a5db9f431d0326ad613
17 schema:genre chapter
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N664d6fb7916a49cc83959973aecd8d39
21 schema:name Feature Based Cut Detection with Automatic Threshold Selection
22 schema:pagination 410-418
23 schema:productId N381b110eb6f7405eb5f5dd2a76fe580c
24 N5fab6c07bf4a43648f4175cc22c0c89c
25 N98eb3f34b868484991bbea96aebc3ac6
26 schema:publisher N5c83b56d24734fa88fe171b84e545291
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039070569
28 https://doi.org/10.1007/978-3-540-27814-6_49
29 schema:sdDatePublished 2019-04-16T08:17
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher N70665e5e285e4a33ab85e29d44b0acfa
32 schema:url https://link.springer.com/10.1007%2F978-3-540-27814-6_49
33 sgo:license sg:explorer/license/
34 sgo:sdDataset chapters
35 rdf:type schema:Chapter
36 N2140fb131a9448b69d1991dc0ba3557d rdf:first N7d37e70808c44b9bbc966efdbaff68ed
37 rdf:rest N78a8ae33a585477ea67618bfd5a22f5c
38 N26a29a01607745e0a2f7428d396d2a15 rdf:first sg:person.01144533722.06
39 rdf:rest rdf:nil
40 N2d8629c284874d178294dbb4d41c06dc schema:familyName Kompatsiaris
41 schema:givenName Yiannis
42 rdf:type schema:Person
43 N381b110eb6f7405eb5f5dd2a76fe580c schema:name doi
44 schema:value 10.1007/978-3-540-27814-6_49
45 rdf:type schema:PropertyValue
46 N570ac2fb3e04461f89eee6948e279c51 rdf:first Ncd6656a039924d3597b9033a68f7e56c
47 rdf:rest N2140fb131a9448b69d1991dc0ba3557d
48 N5c83b56d24734fa88fe171b84e545291 schema:location Berlin, Heidelberg
49 schema:name Springer Berlin Heidelberg
50 rdf:type schema:Organisation
51 N5fab6c07bf4a43648f4175cc22c0c89c schema:name readcube_id
52 schema:value ba1ca881010b8f9f04ef6fbef4cda6b69570246a0658f551503237d4d4ad1766
53 rdf:type schema:PropertyValue
54 N664d6fb7916a49cc83959973aecd8d39 schema:isbn 978-3-540-22539-3
55 978-3-540-27814-6
56 schema:name Image and Video Retrieval
57 rdf:type schema:Book
58 N70665e5e285e4a33ab85e29d44b0acfa schema:name Springer Nature - SN SciGraph project
59 rdf:type schema:Organization
60 N70f16a24f2f046e2b957a57b29cb8c71 rdf:first N2d8629c284874d178294dbb4d41c06dc
61 rdf:rest N570ac2fb3e04461f89eee6948e279c51
62 N7559bab965054605ba37ce891dfc5a20 schema:familyName Smeulders
63 schema:givenName Arnold W. M.
64 rdf:type schema:Person
65 N78a8ae33a585477ea67618bfd5a22f5c rdf:first N7559bab965054605ba37ce891dfc5a20
66 rdf:rest rdf:nil
67 N7d37e70808c44b9bbc966efdbaff68ed schema:familyName Smeaton
68 schema:givenName Alan F.
69 rdf:type schema:Person
70 N7e7b460e1cc7493187c9b7346d438f00 rdf:first sg:person.015631132513.15
71 rdf:rest N26a29a01607745e0a2f7428d396d2a15
72 N944ff72998784540b7147ea4d7dc6f04 rdf:first sg:person.014130767235.52
73 rdf:rest N7e7b460e1cc7493187c9b7346d438f00
74 N98eb3f34b868484991bbea96aebc3ac6 schema:name dimensions_id
75 schema:value pub.1039070569
76 rdf:type schema:PropertyValue
77 Ncd6656a039924d3597b9033a68f7e56c schema:familyName O’Connor
78 schema:givenName Noel E.
79 rdf:type schema:Person
80 Nef1e3c3c5d974ccc81d16f5f6d86c4c5 schema:familyName Enser
81 schema:givenName Peter
82 rdf:type schema:Person
83 Nf9ba608722e24a5db9f431d0326ad613 rdf:first Nef1e3c3c5d974ccc81d16f5f6d86c4c5
84 rdf:rest N70f16a24f2f046e2b957a57b29cb8c71
85 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
86 schema:name Information and Computing Sciences
87 rdf:type schema:DefinedTerm
88 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
89 schema:name Artificial Intelligence and Image Processing
90 rdf:type schema:DefinedTerm
91 sg:person.01144533722.06 schema:affiliation https://www.grid.ac/institutes/grid.28046.38
92 schema:familyName Laganiere
93 schema:givenName Robert
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144533722.06
95 rdf:type schema:Person
96 sg:person.014130767235.52 schema:affiliation https://www.grid.ac/institutes/grid.34428.39
97 schema:familyName Whitehead
98 schema:givenName Anthony
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014130767235.52
100 rdf:type schema:Person
101 sg:person.015631132513.15 schema:affiliation https://www.grid.ac/institutes/grid.34428.39
102 schema:familyName Bose
103 schema:givenName Prosenjit
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015631132513.15
105 rdf:type schema:Person
106 sg:pub.10.1007/978-3-642-72283-7_33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015095020
107 https://doi.org/10.1007/978-3-642-72283-7_33
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/bf01261224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031284122
110 https://doi.org/10.1007/bf01261224
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/s005300050115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035010391
113 https://doi.org/10.1007/s005300050115
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1109/76.633496 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061222122
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1117/12.171773 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020770917
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1117/12.373569 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003287427
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1142/s021946780100027x schema:sameAs https://app.dimensions.ai/details/publication/pub.1062993591
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1145/217279.215266 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098942010
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1145/265563.265572 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003914227
126 rdf:type schema:CreativeWork
127 https://www.grid.ac/institutes/grid.28046.38 schema:alternateName University of Ottawa
128 schema:name School of Information Technology and Engineering, University of Ottawa, Ottawa, Ontario, Canada
129 rdf:type schema:Organization
130 https://www.grid.ac/institutes/grid.34428.39 schema:alternateName Carleton University
131 schema:name School Computer Science, Carleton University, Ottawa, Ontario, Canada
132 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...