A Comparative Study of Formal Concept Analysis and Rough Set Theory in Data Analysis View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2004

AUTHORS

Yiyu Yao

ABSTRACT

The theory of rough sets and formal concept analysis are compared in a common framework based on formal contexts. Different concept lattices can be constructed. Formal concept analysis focuses on concepts that are definable by conjuctions of properties, rough set theory focuses on concepts that are definable by disjunctions of properties. They produce different types of rules summarizing knowledge embedded in data. More... »

PAGES

59-68

References to SciGraph publications

  • 1999. Formal Rough Concept Analysis in NEW DIRECTIONS IN ROUGH SETS, DATA MINING, AND GRANULAR-SOFT COMPUTING
  • 2001-12-18. A Conceptual View of Knowledge Bases in Rough Set Theory in ROUGH SETS AND CURRENT TRENDS IN COMPUTING
  • 1999. Formal Concept Analysis, Mathematical Foundations in NONE
  • 2001. Concept Approximation in Concept Lattice in ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING
  • 1982. Restructuring Lattice Theory: An Approach Based on Hierarchies of Concepts in ORDERED SETS
  • 1982-10. Rough sets in INTERNATIONAL JOURNAL OF PARALLEL PROGRAMMING
  • 1997. A Review of Rough Set Models in ROUGH SETS AND DATA MINING
  • 2003. Approximation Operators in Qualitative Data Analysis in THEORY AND APPLICATIONS OF RELATIONAL STRUCTURES AS KNOWLEDGE INSTRUMENTS
  • Book

    TITLE

    Rough Sets and Current Trends in Computing

    ISBN

    978-3-540-22117-3
    978-3-540-25929-9

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-540-25929-9_6

    DOI

    http://dx.doi.org/10.1007/978-3-540-25929-9_6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1047277655


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Computation Theory and Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Regina", 
              "id": "https://www.grid.ac/institutes/grid.57926.3f", 
              "name": [
                "Department of Computer Science, University of Regina, S4S 0A2, Regina, Saskatchewan, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yao", 
            "givenName": "Yiyu", 
            "id": "sg:person.07727117553.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07727117553.07"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/3-540-45357-1_21", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004479959", 
              "https://doi.org/10.1007/3-540-45357-1_21"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-009-7798-3_15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014658433", 
              "https://doi.org/10.1007/978-94-009-7798-3_15"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1015571330", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-59830-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015571330", 
              "https://doi.org/10.1007/978-3-642-59830-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-59830-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015571330", 
              "https://doi.org/10.1007/978-3-642-59830-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01001956", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020579132", 
              "https://doi.org/10.1007/bf01001956"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-48061-7_13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021201055", 
              "https://doi.org/10.1007/978-3-540-48061-7_13"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-48061-7_13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021201055", 
              "https://doi.org/10.1007/978-3-540-48061-7_13"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4613-1461-5_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021305922", 
              "https://doi.org/10.1007/978-1-4613-1461-5_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-24615-2_10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024513558", 
              "https://doi.org/10.1007/978-3-540-24615-2_10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0888-613x(96)00071-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032255822"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-45554-x_26", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033352365", 
              "https://doi.org/10.1007/3-540-45554-x_26"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-45554-x_26", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033352365", 
              "https://doi.org/10.1007/3-540-45554-x_26"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/b978-1-4832-8287-9.50051-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035646022"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1348/000711002760554516", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040503273"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/nafips.2004.1337404", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094098775"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/nafips.2004.1336252", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095526938"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2004", 
        "datePublishedReg": "2004-01-01", 
        "description": "The theory of rough sets and formal concept analysis are compared in a common framework based on formal contexts. Different concept lattices can be constructed. Formal concept analysis focuses on concepts that are definable by conjuctions of properties, rough set theory focuses on concepts that are definable by disjunctions of properties. They produce different types of rules summarizing knowledge embedded in data.", 
        "editor": [
          {
            "familyName": "Tsumoto", 
            "givenName": "Shusaku", 
            "type": "Person"
          }, 
          {
            "familyName": "S\u0142owi\u0144ski", 
            "givenName": "Roman", 
            "type": "Person"
          }, 
          {
            "familyName": "Komorowski", 
            "givenName": "Jan", 
            "type": "Person"
          }, 
          {
            "familyName": "Grzyma\u0142a-Busse", 
            "givenName": "Jerzy W.", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-540-25929-9_6", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-540-22117-3", 
            "978-3-540-25929-9"
          ], 
          "name": "Rough Sets and Current Trends in Computing", 
          "type": "Book"
        }, 
        "name": "A Comparative Study of Formal Concept Analysis and Rough Set Theory in Data Analysis", 
        "pagination": "59-68", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1047277655"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-540-25929-9_6"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "e1377c9b3089a12d75d43bdaffdbc719f2c50c7f599822431eba31dad69a0726"
            ]
          }
        ], 
        "publisher": {
          "location": "Berlin, Heidelberg", 
          "name": "Springer Berlin Heidelberg", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-540-25929-9_6", 
          "https://app.dimensions.ai/details/publication/pub.1047277655"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-16T08:24", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70046_00000002.jsonl", 
        "type": "Chapter", 
        "url": "https://link.springer.com/10.1007%2F978-3-540-25929-9_6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-25929-9_6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-25929-9_6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-25929-9_6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-25929-9_6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    129 TRIPLES      23 PREDICATES      41 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-540-25929-9_6 schema:about anzsrc-for:08
    2 anzsrc-for:0802
    3 schema:author N1f8ea68779e043e1b554cfd6e5e23002
    4 schema:citation sg:pub.10.1007/3-540-45357-1_21
    5 sg:pub.10.1007/3-540-45554-x_26
    6 sg:pub.10.1007/978-1-4613-1461-5_3
    7 sg:pub.10.1007/978-3-540-24615-2_10
    8 sg:pub.10.1007/978-3-540-48061-7_13
    9 sg:pub.10.1007/978-3-642-59830-2
    10 sg:pub.10.1007/978-94-009-7798-3_15
    11 sg:pub.10.1007/bf01001956
    12 https://app.dimensions.ai/details/publication/pub.1015571330
    13 https://doi.org/10.1016/b978-1-4832-8287-9.50051-7
    14 https://doi.org/10.1016/s0888-613x(96)00071-0
    15 https://doi.org/10.1109/nafips.2004.1336252
    16 https://doi.org/10.1109/nafips.2004.1337404
    17 https://doi.org/10.1348/000711002760554516
    18 schema:datePublished 2004
    19 schema:datePublishedReg 2004-01-01
    20 schema:description The theory of rough sets and formal concept analysis are compared in a common framework based on formal contexts. Different concept lattices can be constructed. Formal concept analysis focuses on concepts that are definable by conjuctions of properties, rough set theory focuses on concepts that are definable by disjunctions of properties. They produce different types of rules summarizing knowledge embedded in data.
    21 schema:editor Nab12f8a9caac4777afb5f67469e61722
    22 schema:genre chapter
    23 schema:inLanguage en
    24 schema:isAccessibleForFree false
    25 schema:isPartOf Nacf4cdb69c8846718a74353ef8e98519
    26 schema:name A Comparative Study of Formal Concept Analysis and Rough Set Theory in Data Analysis
    27 schema:pagination 59-68
    28 schema:productId N1113a13927734030ab8e6ece8e14b32e
    29 N9bf086f01e4742cb8971927d2637fb00
    30 Ncd5ad24abd454ed88b5b861f0b44179e
    31 schema:publisher N6f63ffbc8ad24759b8e9ba711029a553
    32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047277655
    33 https://doi.org/10.1007/978-3-540-25929-9_6
    34 schema:sdDatePublished 2019-04-16T08:24
    35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    36 schema:sdPublisher N1dcc1cc12a40462d90a61ea6581cfbb9
    37 schema:url https://link.springer.com/10.1007%2F978-3-540-25929-9_6
    38 sgo:license sg:explorer/license/
    39 sgo:sdDataset chapters
    40 rdf:type schema:Chapter
    41 N1113a13927734030ab8e6ece8e14b32e schema:name dimensions_id
    42 schema:value pub.1047277655
    43 rdf:type schema:PropertyValue
    44 N1dcc1cc12a40462d90a61ea6581cfbb9 schema:name Springer Nature - SN SciGraph project
    45 rdf:type schema:Organization
    46 N1f8ea68779e043e1b554cfd6e5e23002 rdf:first sg:person.07727117553.07
    47 rdf:rest rdf:nil
    48 N5af5fe01f3be44299dec403479db49b8 rdf:first Nc6b5cb5345494657aa289464a9513471
    49 rdf:rest N6b566f1517524a7e96741be592b84260
    50 N6b566f1517524a7e96741be592b84260 rdf:first N8613f4c5a4d047a591e37804b1c95af2
    51 rdf:rest Nd5250ff7367245e6869a98c793da5f82
    52 N6f63ffbc8ad24759b8e9ba711029a553 schema:location Berlin, Heidelberg
    53 schema:name Springer Berlin Heidelberg
    54 rdf:type schema:Organisation
    55 N8613f4c5a4d047a591e37804b1c95af2 schema:familyName Komorowski
    56 schema:givenName Jan
    57 rdf:type schema:Person
    58 N91a372ec795945f39a030159e1c5a2cb schema:familyName Tsumoto
    59 schema:givenName Shusaku
    60 rdf:type schema:Person
    61 N9bf086f01e4742cb8971927d2637fb00 schema:name readcube_id
    62 schema:value e1377c9b3089a12d75d43bdaffdbc719f2c50c7f599822431eba31dad69a0726
    63 rdf:type schema:PropertyValue
    64 Nab12f8a9caac4777afb5f67469e61722 rdf:first N91a372ec795945f39a030159e1c5a2cb
    65 rdf:rest N5af5fe01f3be44299dec403479db49b8
    66 Nab138136e76e40fbad841ebebc817031 schema:familyName Grzymała-Busse
    67 schema:givenName Jerzy W.
    68 rdf:type schema:Person
    69 Nacf4cdb69c8846718a74353ef8e98519 schema:isbn 978-3-540-22117-3
    70 978-3-540-25929-9
    71 schema:name Rough Sets and Current Trends in Computing
    72 rdf:type schema:Book
    73 Nc6b5cb5345494657aa289464a9513471 schema:familyName Słowiński
    74 schema:givenName Roman
    75 rdf:type schema:Person
    76 Ncd5ad24abd454ed88b5b861f0b44179e schema:name doi
    77 schema:value 10.1007/978-3-540-25929-9_6
    78 rdf:type schema:PropertyValue
    79 Nd5250ff7367245e6869a98c793da5f82 rdf:first Nab138136e76e40fbad841ebebc817031
    80 rdf:rest rdf:nil
    81 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    82 schema:name Information and Computing Sciences
    83 rdf:type schema:DefinedTerm
    84 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
    85 schema:name Computation Theory and Mathematics
    86 rdf:type schema:DefinedTerm
    87 sg:person.07727117553.07 schema:affiliation https://www.grid.ac/institutes/grid.57926.3f
    88 schema:familyName Yao
    89 schema:givenName Yiyu
    90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07727117553.07
    91 rdf:type schema:Person
    92 sg:pub.10.1007/3-540-45357-1_21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004479959
    93 https://doi.org/10.1007/3-540-45357-1_21
    94 rdf:type schema:CreativeWork
    95 sg:pub.10.1007/3-540-45554-x_26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033352365
    96 https://doi.org/10.1007/3-540-45554-x_26
    97 rdf:type schema:CreativeWork
    98 sg:pub.10.1007/978-1-4613-1461-5_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021305922
    99 https://doi.org/10.1007/978-1-4613-1461-5_3
    100 rdf:type schema:CreativeWork
    101 sg:pub.10.1007/978-3-540-24615-2_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024513558
    102 https://doi.org/10.1007/978-3-540-24615-2_10
    103 rdf:type schema:CreativeWork
    104 sg:pub.10.1007/978-3-540-48061-7_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021201055
    105 https://doi.org/10.1007/978-3-540-48061-7_13
    106 rdf:type schema:CreativeWork
    107 sg:pub.10.1007/978-3-642-59830-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015571330
    108 https://doi.org/10.1007/978-3-642-59830-2
    109 rdf:type schema:CreativeWork
    110 sg:pub.10.1007/978-94-009-7798-3_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014658433
    111 https://doi.org/10.1007/978-94-009-7798-3_15
    112 rdf:type schema:CreativeWork
    113 sg:pub.10.1007/bf01001956 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020579132
    114 https://doi.org/10.1007/bf01001956
    115 rdf:type schema:CreativeWork
    116 https://app.dimensions.ai/details/publication/pub.1015571330 schema:CreativeWork
    117 https://doi.org/10.1016/b978-1-4832-8287-9.50051-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035646022
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1016/s0888-613x(96)00071-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032255822
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1109/nafips.2004.1336252 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095526938
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1109/nafips.2004.1337404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094098775
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1348/000711002760554516 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040503273
    126 rdf:type schema:CreativeWork
    127 https://www.grid.ac/institutes/grid.57926.3f schema:alternateName University of Regina
    128 schema:name Department of Computer Science, University of Regina, S4S 0A2, Regina, Saskatchewan, Canada
    129 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...