Real-Valued Negative Selection Algorithm with Variable-Sized Detectors View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2004

AUTHORS

Zhou Ji , Dipankar Dasgupta

ABSTRACT

A new scheme of detector generation and matching mechanism for negative selection algorithm is introduced featuring detectors with variable properties. While detectors can be variable in different ways using this concept, the paper describes an algorithm when the variable parameter is the size of the detectors in real-valued space. The algorithm is tested using synthetic and real-world datasets, including time series data that are transformed into multiple-dimensional data during the preprocessing phase. Preliminary results demonstrate that the new approach enhances the negative selection algorithm in efficiency and reliability without significant increase in complexity. More... »

PAGES

287-298

Book

TITLE

Genetic and Evolutionary Computation – GECCO 2004

ISBN

978-3-540-22344-3
978-3-540-24854-5

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-24854-5_30

DOI

http://dx.doi.org/10.1007/978-3-540-24854-5_30

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007387349


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "St. Jude Children's Research Hospital", 
          "id": "https://www.grid.ac/institutes/grid.240871.8", 
          "name": [
            "St. Jude Children\u2019s Research Hospital, 38105, Memphis, TN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ji", 
        "givenName": "Zhou", 
        "id": "sg:person.07440563501.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07440563501.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Memphis", 
          "id": "https://www.grid.ac/institutes/grid.56061.34", 
          "name": [
            "The University of Memphis, 38152, Memphis, TN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dasgupta", 
        "givenName": "Dipankar", 
        "id": "sg:person.013012607467.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013012607467.59"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/3-540-45105-6_25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014094239", 
          "https://doi.org/10.1007/3-540-45105-6_25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-45105-6_25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014094239", 
          "https://doi.org/10.1007/3-540-45105-6_25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-45105-6_24", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016881069", 
          "https://doi.org/10.1007/3-540-45105-6_24"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-45105-6_24", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016881069", 
          "https://doi.org/10.1007/3-540-45105-6_24"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1026195112518", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020364149", 
          "https://doi.org/10.1023/a:1026195112518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-59901-9_14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020751889", 
          "https://doi.org/10.1007/978-3-642-59901-9_14"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-59901-9_14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020751889", 
          "https://doi.org/10.1007/978-3-642-59901-9_14"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-45192-1_25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035052657", 
          "https://doi.org/10.1007/978-3-540-45192-1_25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/106365600568257", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036749321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-45192-1_23", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047641888", 
          "https://doi.org/10.1007/978-3-540-45192-1_23"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-45192-1_23", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047641888", 
          "https://doi.org/10.1007/978-3-540-45192-1_23"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmcb.2003.817026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061796211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cec.2003.1299565", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094891653"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004", 
    "datePublishedReg": "2004-01-01", 
    "description": "A new scheme of detector generation and matching mechanism for negative selection algorithm is introduced featuring detectors with variable properties. While detectors can be variable in different ways using this concept, the paper describes an algorithm when the variable parameter is the size of the detectors in real-valued space. The algorithm is tested using synthetic and real-world datasets, including time series data that are transformed into multiple-dimensional data during the preprocessing phase. Preliminary results demonstrate that the new approach enhances the negative selection algorithm in efficiency and reliability without significant increase in complexity.", 
    "editor": [
      {
        "familyName": "Deb", 
        "givenName": "Kalyanmoy", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-24854-5_30", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-22344-3", 
        "978-3-540-24854-5"
      ], 
      "name": "Genetic and Evolutionary Computation \u2013 GECCO 2004", 
      "type": "Book"
    }, 
    "name": "Real-Valued Negative Selection Algorithm with Variable-Sized Detectors", 
    "pagination": "287-298", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007387349"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-24854-5_30"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "23303c78c6b6ac56b21d959b5638ac04ec6fd4d9a7ea73cd3fd98168adb82318"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-24854-5_30", 
      "https://app.dimensions.ai/details/publication/pub.1007387349"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T08:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70046_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-540-24854-5_30"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-24854-5_30'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-24854-5_30'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-24854-5_30'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-24854-5_30'


 

This table displays all metadata directly associated to this object as RDF triples.

108 TRIPLES      23 PREDICATES      36 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-24854-5_30 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Na47895a32bd44377967925fc22755b5d
4 schema:citation sg:pub.10.1007/3-540-45105-6_24
5 sg:pub.10.1007/3-540-45105-6_25
6 sg:pub.10.1007/978-3-540-45192-1_23
7 sg:pub.10.1007/978-3-540-45192-1_25
8 sg:pub.10.1007/978-3-642-59901-9_14
9 sg:pub.10.1023/a:1026195112518
10 https://doi.org/10.1109/cec.2003.1299565
11 https://doi.org/10.1109/tsmcb.2003.817026
12 https://doi.org/10.1162/106365600568257
13 schema:datePublished 2004
14 schema:datePublishedReg 2004-01-01
15 schema:description A new scheme of detector generation and matching mechanism for negative selection algorithm is introduced featuring detectors with variable properties. While detectors can be variable in different ways using this concept, the paper describes an algorithm when the variable parameter is the size of the detectors in real-valued space. The algorithm is tested using synthetic and real-world datasets, including time series data that are transformed into multiple-dimensional data during the preprocessing phase. Preliminary results demonstrate that the new approach enhances the negative selection algorithm in efficiency and reliability without significant increase in complexity.
16 schema:editor Nbc49933c1c13475896a9ade06495150f
17 schema:genre chapter
18 schema:inLanguage en
19 schema:isAccessibleForFree true
20 schema:isPartOf Nf98810f673c44ec1be411148f750e30d
21 schema:name Real-Valued Negative Selection Algorithm with Variable-Sized Detectors
22 schema:pagination 287-298
23 schema:productId N13979c87584249d380f948ce8244f92f
24 N34893bc944c94b21bc713ecf1c235a63
25 N5581028680344a47a305ee4d0c057270
26 schema:publisher N3ee5b72a07114a35b488ac6d8f97a435
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007387349
28 https://doi.org/10.1007/978-3-540-24854-5_30
29 schema:sdDatePublished 2019-04-16T08:24
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher N00d810d82694499994405bca976daf88
32 schema:url https://link.springer.com/10.1007%2F978-3-540-24854-5_30
33 sgo:license sg:explorer/license/
34 sgo:sdDataset chapters
35 rdf:type schema:Chapter
36 N00d810d82694499994405bca976daf88 schema:name Springer Nature - SN SciGraph project
37 rdf:type schema:Organization
38 N13979c87584249d380f948ce8244f92f schema:name readcube_id
39 schema:value 23303c78c6b6ac56b21d959b5638ac04ec6fd4d9a7ea73cd3fd98168adb82318
40 rdf:type schema:PropertyValue
41 N34893bc944c94b21bc713ecf1c235a63 schema:name dimensions_id
42 schema:value pub.1007387349
43 rdf:type schema:PropertyValue
44 N3ee5b72a07114a35b488ac6d8f97a435 schema:location Berlin, Heidelberg
45 schema:name Springer Berlin Heidelberg
46 rdf:type schema:Organisation
47 N5581028680344a47a305ee4d0c057270 schema:name doi
48 schema:value 10.1007/978-3-540-24854-5_30
49 rdf:type schema:PropertyValue
50 Na47895a32bd44377967925fc22755b5d rdf:first sg:person.07440563501.07
51 rdf:rest Na541be3244084c7788ecb52fe30efe6a
52 Na541be3244084c7788ecb52fe30efe6a rdf:first sg:person.013012607467.59
53 rdf:rest rdf:nil
54 Nbc49933c1c13475896a9ade06495150f rdf:first Ncfcf67b3d0924a5eb505577d750ac1d7
55 rdf:rest rdf:nil
56 Ncfcf67b3d0924a5eb505577d750ac1d7 schema:familyName Deb
57 schema:givenName Kalyanmoy
58 rdf:type schema:Person
59 Nf98810f673c44ec1be411148f750e30d schema:isbn 978-3-540-22344-3
60 978-3-540-24854-5
61 schema:name Genetic and Evolutionary Computation – GECCO 2004
62 rdf:type schema:Book
63 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
64 schema:name Information and Computing Sciences
65 rdf:type schema:DefinedTerm
66 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
67 schema:name Artificial Intelligence and Image Processing
68 rdf:type schema:DefinedTerm
69 sg:person.013012607467.59 schema:affiliation https://www.grid.ac/institutes/grid.56061.34
70 schema:familyName Dasgupta
71 schema:givenName Dipankar
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013012607467.59
73 rdf:type schema:Person
74 sg:person.07440563501.07 schema:affiliation https://www.grid.ac/institutes/grid.240871.8
75 schema:familyName Ji
76 schema:givenName Zhou
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07440563501.07
78 rdf:type schema:Person
79 sg:pub.10.1007/3-540-45105-6_24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016881069
80 https://doi.org/10.1007/3-540-45105-6_24
81 rdf:type schema:CreativeWork
82 sg:pub.10.1007/3-540-45105-6_25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014094239
83 https://doi.org/10.1007/3-540-45105-6_25
84 rdf:type schema:CreativeWork
85 sg:pub.10.1007/978-3-540-45192-1_23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047641888
86 https://doi.org/10.1007/978-3-540-45192-1_23
87 rdf:type schema:CreativeWork
88 sg:pub.10.1007/978-3-540-45192-1_25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035052657
89 https://doi.org/10.1007/978-3-540-45192-1_25
90 rdf:type schema:CreativeWork
91 sg:pub.10.1007/978-3-642-59901-9_14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020751889
92 https://doi.org/10.1007/978-3-642-59901-9_14
93 rdf:type schema:CreativeWork
94 sg:pub.10.1023/a:1026195112518 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020364149
95 https://doi.org/10.1023/a:1026195112518
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1109/cec.2003.1299565 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094891653
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1109/tsmcb.2003.817026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061796211
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1162/106365600568257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036749321
102 rdf:type schema:CreativeWork
103 https://www.grid.ac/institutes/grid.240871.8 schema:alternateName St. Jude Children's Research Hospital
104 schema:name St. Jude Children’s Research Hospital, 38105, Memphis, TN, USA
105 rdf:type schema:Organization
106 https://www.grid.ac/institutes/grid.56061.34 schema:alternateName University of Memphis
107 schema:name The University of Memphis, 38152, Memphis, TN, USA
108 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...