Automata for Arithmetic Meyer Sets View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2004

AUTHORS

Shigeki Akiyama , Frédérique Bassino , Christiane Frougny

ABSTRACT

The set ℤβ of β-integers is a Meyer set when β is a Pisot number, and thus there exists a finite set F such that ℤβ − ℤβ ⊂ ℤβ + F. We give finite automata describing the expansions of the elements of ℤβ and of ℤβ − ℤβ. We present a construction of such a finite set F, and a method to minimize the size of F. We obtain in this way a finite transducer that performs the decomposition of the elements of ℤβ − ℤβ as a sum belonging to ℤβ + F. More... »

PAGES

252-261

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-24698-5_29

DOI

http://dx.doi.org/10.1007/978-3-540-24698-5_29

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1031231219


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Faculty of Sciences, Niigata University, Ikarashi-2, 8050, 950-2181, Niigata, Japan", 
          "id": "http://www.grid.ac/institutes/grid.260975.f", 
          "name": [
            "Department of Mathematics, Faculty of Sciences, Niigata University, Ikarashi-2, 8050, 950-2181, Niigata, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Akiyama", 
        "givenName": "Shigeki", 
        "id": "sg:person.011153327405.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011153327405.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut Gaspard Monge, Universit\u00e9 de Marne-la-Vall\u00e9e, 5 Boulevard Descartes, Champs-sur-Marne, 77454, Marne-la-Vall\u00e9e Cedex 2, France", 
          "id": "http://www.grid.ac/institutes/grid.509737.f", 
          "name": [
            "Institut Gaspard Monge, Universit\u00e9 de Marne-la-Vall\u00e9e, 5 Boulevard Descartes, Champs-sur-Marne, 77454, Marne-la-Vall\u00e9e Cedex 2, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bassino", 
        "givenName": "Fr\u00e9d\u00e9rique", 
        "id": "sg:person.011513674507.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011513674507.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "LIAFA, UMR 7089, and Universit\u00e9 Paris 8, 2 Place Jussieu, 75251, Paris Cedex 05, France", 
          "id": "http://www.grid.ac/institutes/grid.15878.33", 
          "name": [
            "LIAFA, UMR 7089, and Universit\u00e9 Paris 8, 2 Place Jussieu, 75251, Paris Cedex 05, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Frougny", 
        "givenName": "Christiane", 
        "id": "sg:person.011327100311.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011327100311.34"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2004", 
    "datePublishedReg": "2004-01-01", 
    "description": "The set \u2124\u03b2 of \u03b2-integers is a Meyer set when \u03b2 is a Pisot number, and thus there exists a finite set F such that \u2124\u03b2\u2009\u2212\u2009\u2124\u03b2\u2009\u2282\u2009\u2124\u03b2\u2009+\u2009F. We give finite automata describing the expansions of the elements of \u2124\u03b2 and of \u2124\u03b2\u2009\u2212\u2009\u2124\u03b2. We present a construction of such a finite set F, and a method to minimize the size of F. We obtain in this way a finite transducer that performs the decomposition of the elements of \u2124\u03b2\u2009\u2212\u2009\u2124\u03b2 as a sum belonging to \u2124\u03b2\u2009+\u2009F.", 
    "editor": [
      {
        "familyName": "Farach-Colton", 
        "givenName": "Mart\u00edn", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-24698-5_29", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-21258-4", 
        "978-3-540-24698-5"
      ], 
      "name": "LATIN 2004: Theoretical Informatics", 
      "type": "Book"
    }, 
    "keywords": [
      "transducer", 
      "elements", 
      "decomposition", 
      "finite", 
      "construction", 
      "method", 
      "size", 
      "expansion", 
      "way", 
      "sum", 
      "number", 
      "automata", 
      "finite transducers", 
      "Meyer", 
      "integers", 
      "finite automata", 
      "Pisot number"
    ], 
    "name": "Automata for Arithmetic Meyer Sets", 
    "pagination": "252-261", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1031231219"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-24698-5_29"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-24698-5_29", 
      "https://app.dimensions.ai/details/publication/pub.1031231219"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-10T10:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/chapter/chapter_63.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-540-24698-5_29"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-24698-5_29'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-24698-5_29'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-24698-5_29'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-24698-5_29'


 

This table displays all metadata directly associated to this object as RDF triples.

97 TRIPLES      23 PREDICATES      43 URIs      36 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-24698-5_29 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N7afdfc01dbe7476e83c457c47a032a84
4 schema:datePublished 2004
5 schema:datePublishedReg 2004-01-01
6 schema:description The set ℤβ of β-integers is a Meyer set when β is a Pisot number, and thus there exists a finite set F such that ℤβ − ℤβ ⊂ ℤβ + F. We give finite automata describing the expansions of the elements of ℤβ and of ℤβ − ℤβ. We present a construction of such a finite set F, and a method to minimize the size of F. We obtain in this way a finite transducer that performs the decomposition of the elements of ℤβ − ℤβ as a sum belonging to ℤβ + F.
7 schema:editor N1e510b4acad64f639370e7ddd9393ac9
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf Ncdc3982f7d254e2d843e478142d40c83
12 schema:keywords Meyer
13 Pisot number
14 automata
15 construction
16 decomposition
17 elements
18 expansion
19 finite
20 finite automata
21 finite transducers
22 integers
23 method
24 number
25 size
26 sum
27 transducer
28 way
29 schema:name Automata for Arithmetic Meyer Sets
30 schema:pagination 252-261
31 schema:productId Na443d5a075f94f06888bba374a1e4a0a
32 Ncf61a235f25b457696fce643f6566840
33 schema:publisher Nc92a2ae0f755472d8f6ffb21e84ce59a
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031231219
35 https://doi.org/10.1007/978-3-540-24698-5_29
36 schema:sdDatePublished 2022-05-10T10:55
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher Nfc1a78c836df477ba9c30cdb99267fda
39 schema:url https://doi.org/10.1007/978-3-540-24698-5_29
40 sgo:license sg:explorer/license/
41 sgo:sdDataset chapters
42 rdf:type schema:Chapter
43 N1b4d4a12468c48e5bc842d7ab0f87999 rdf:first sg:person.011513674507.55
44 rdf:rest Nf80538d3062c44539d48c6bbc80ff494
45 N1e510b4acad64f639370e7ddd9393ac9 rdf:first N9d0fc43c64d34914a64d1c7321deb95d
46 rdf:rest rdf:nil
47 N7afdfc01dbe7476e83c457c47a032a84 rdf:first sg:person.011153327405.03
48 rdf:rest N1b4d4a12468c48e5bc842d7ab0f87999
49 N9d0fc43c64d34914a64d1c7321deb95d schema:familyName Farach-Colton
50 schema:givenName Martín
51 rdf:type schema:Person
52 Na443d5a075f94f06888bba374a1e4a0a schema:name doi
53 schema:value 10.1007/978-3-540-24698-5_29
54 rdf:type schema:PropertyValue
55 Nc92a2ae0f755472d8f6ffb21e84ce59a schema:name Springer Nature
56 rdf:type schema:Organisation
57 Ncdc3982f7d254e2d843e478142d40c83 schema:isbn 978-3-540-21258-4
58 978-3-540-24698-5
59 schema:name LATIN 2004: Theoretical Informatics
60 rdf:type schema:Book
61 Ncf61a235f25b457696fce643f6566840 schema:name dimensions_id
62 schema:value pub.1031231219
63 rdf:type schema:PropertyValue
64 Nf80538d3062c44539d48c6bbc80ff494 rdf:first sg:person.011327100311.34
65 rdf:rest rdf:nil
66 Nfc1a78c836df477ba9c30cdb99267fda schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
69 schema:name Mathematical Sciences
70 rdf:type schema:DefinedTerm
71 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
72 schema:name Pure Mathematics
73 rdf:type schema:DefinedTerm
74 sg:person.011153327405.03 schema:affiliation grid-institutes:grid.260975.f
75 schema:familyName Akiyama
76 schema:givenName Shigeki
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011153327405.03
78 rdf:type schema:Person
79 sg:person.011327100311.34 schema:affiliation grid-institutes:grid.15878.33
80 schema:familyName Frougny
81 schema:givenName Christiane
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011327100311.34
83 rdf:type schema:Person
84 sg:person.011513674507.55 schema:affiliation grid-institutes:grid.509737.f
85 schema:familyName Bassino
86 schema:givenName Frédérique
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011513674507.55
88 rdf:type schema:Person
89 grid-institutes:grid.15878.33 schema:alternateName LIAFA, UMR 7089, and Université Paris 8, 2 Place Jussieu, 75251, Paris Cedex 05, France
90 schema:name LIAFA, UMR 7089, and Université Paris 8, 2 Place Jussieu, 75251, Paris Cedex 05, France
91 rdf:type schema:Organization
92 grid-institutes:grid.260975.f schema:alternateName Department of Mathematics, Faculty of Sciences, Niigata University, Ikarashi-2, 8050, 950-2181, Niigata, Japan
93 schema:name Department of Mathematics, Faculty of Sciences, Niigata University, Ikarashi-2, 8050, 950-2181, Niigata, Japan
94 rdf:type schema:Organization
95 grid-institutes:grid.509737.f schema:alternateName Institut Gaspard Monge, Université de Marne-la-Vallée, 5 Boulevard Descartes, Champs-sur-Marne, 77454, Marne-la-Vallée Cedex 2, France
96 schema:name Institut Gaspard Monge, Université de Marne-la-Vallée, 5 Boulevard Descartes, Champs-sur-Marne, 77454, Marne-la-Vallée Cedex 2, France
97 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...