Weak Fields for ECC View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2004

AUTHORS

Alfred Menezes , Edlyn Teske , Annegret Weng

ABSTRACT

We demonstrate that some finite fields, including \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{F}_{{2}^{210}}$\end{document}, are weak for elliptic curve cryptography in the sense that any instance of the elliptic curve discrete logarithm problem for any elliptic curve over these fields can be solved in significantly less time than it takes Pollard’s rho method to solve the hardest instances. We discuss the implications of our observations to elliptic curve cryptography, and list some open problems. More... »

PAGES

366-386

Book

TITLE

Topics in Cryptology – CT-RSA 2004

ISBN

978-3-540-20996-6
978-3-540-24660-2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-24660-2_28

DOI

http://dx.doi.org/10.1007/978-3-540-24660-2_28

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1032150012


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Waterloo, Canada", 
          "id": "http://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "University of Waterloo, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Menezes", 
        "givenName": "Alfred", 
        "id": "sg:person.012711653371.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012711653371.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Waterloo, Canada", 
          "id": "http://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "University of Waterloo, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Teske", 
        "givenName": "Edlyn", 
        "id": "sg:person.016510414552.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016510414552.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Essen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5718.b", 
          "name": [
            "University of Essen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Weng", 
        "givenName": "Annegret", 
        "id": "sg:person.014342226432.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014342226432.95"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2004", 
    "datePublishedReg": "2004-01-01", 
    "description": "We demonstrate that some finite fields, including \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\mathbb{F}_{{2}^{210}}$\\end{document}, are weak for elliptic curve cryptography in the sense that any instance of the elliptic curve discrete logarithm problem for any elliptic curve over these fields can be solved in significantly less time than it takes Pollard\u2019s rho method to solve the hardest instances. We discuss the implications of our observations to elliptic curve cryptography, and list some open problems.", 
    "editor": [
      {
        "familyName": "Okamoto", 
        "givenName": "Tatsuaki", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-24660-2_28", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-20996-6", 
        "978-3-540-24660-2"
      ], 
      "name": "Topics in Cryptology \u2013 CT-RSA 2004", 
      "type": "Book"
    }, 
    "keywords": [
      "elliptic curve cryptography", 
      "rho method", 
      "elliptic curve discrete logarithm problem", 
      "Pollard's rho method", 
      "elliptic curves", 
      "finite field", 
      "discrete logarithm problem", 
      "open problem", 
      "hard instances", 
      "logarithm problem", 
      "problem", 
      "cryptography", 
      "weak fields", 
      "instances", 
      "field", 
      "sense", 
      "curves", 
      "less time", 
      "time", 
      "observations", 
      "ECC", 
      "implications", 
      "method", 
      "curve cryptography", 
      "curve discrete logarithm problem"
    ], 
    "name": "Weak Fields for ECC", 
    "pagination": "366-386", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1032150012"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-24660-2_28"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-24660-2_28", 
      "https://app.dimensions.ai/details/publication/pub.1032150012"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T19:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_175.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-540-24660-2_28"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-24660-2_28'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-24660-2_28'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-24660-2_28'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-24660-2_28'


 

This table displays all metadata directly associated to this object as RDF triples.

102 TRIPLES      23 PREDICATES      51 URIs      44 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-24660-2_28 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N7f2e6b5ffaec423e9d7de41c0dded671
4 schema:datePublished 2004
5 schema:datePublishedReg 2004-01-01
6 schema:description We demonstrate that some finite fields, including \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{F}_{{2}^{210}}$\end{document}, are weak for elliptic curve cryptography in the sense that any instance of the elliptic curve discrete logarithm problem for any elliptic curve over these fields can be solved in significantly less time than it takes Pollard’s rho method to solve the hardest instances. We discuss the implications of our observations to elliptic curve cryptography, and list some open problems.
7 schema:editor N4168de10d8e94e4a996d5c65a153a869
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N462a63785cca4230915726cc522b7239
12 schema:keywords ECC
13 Pollard's rho method
14 cryptography
15 curve cryptography
16 curve discrete logarithm problem
17 curves
18 discrete logarithm problem
19 elliptic curve cryptography
20 elliptic curve discrete logarithm problem
21 elliptic curves
22 field
23 finite field
24 hard instances
25 implications
26 instances
27 less time
28 logarithm problem
29 method
30 observations
31 open problem
32 problem
33 rho method
34 sense
35 time
36 weak fields
37 schema:name Weak Fields for ECC
38 schema:pagination 366-386
39 schema:productId N07ee46ece59e453c830c1690b1ca7b5e
40 N5fc6e6789e2444c090246d2039dcd75c
41 schema:publisher N203c110152b1431ba93efd24d8f125eb
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032150012
43 https://doi.org/10.1007/978-3-540-24660-2_28
44 schema:sdDatePublished 2021-12-01T19:58
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher N69095439d13d44cb9497feb242e92c17
47 schema:url https://doi.org/10.1007/978-3-540-24660-2_28
48 sgo:license sg:explorer/license/
49 sgo:sdDataset chapters
50 rdf:type schema:Chapter
51 N07ee46ece59e453c830c1690b1ca7b5e schema:name doi
52 schema:value 10.1007/978-3-540-24660-2_28
53 rdf:type schema:PropertyValue
54 N203c110152b1431ba93efd24d8f125eb schema:name Springer Nature
55 rdf:type schema:Organisation
56 N4168de10d8e94e4a996d5c65a153a869 rdf:first Nd98ec850f45e4427a2aaa2891050d7b9
57 rdf:rest rdf:nil
58 N462a63785cca4230915726cc522b7239 schema:isbn 978-3-540-20996-6
59 978-3-540-24660-2
60 schema:name Topics in Cryptology – CT-RSA 2004
61 rdf:type schema:Book
62 N46b7ab2f88a249138ff84095079d4dba rdf:first sg:person.014342226432.95
63 rdf:rest rdf:nil
64 N5fc6e6789e2444c090246d2039dcd75c schema:name dimensions_id
65 schema:value pub.1032150012
66 rdf:type schema:PropertyValue
67 N69095439d13d44cb9497feb242e92c17 schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 N7f2e6b5ffaec423e9d7de41c0dded671 rdf:first sg:person.012711653371.43
70 rdf:rest Naf5acf0bf6604d3caea5b2542f3e7cd8
71 Naf5acf0bf6604d3caea5b2542f3e7cd8 rdf:first sg:person.016510414552.62
72 rdf:rest N46b7ab2f88a249138ff84095079d4dba
73 Nd98ec850f45e4427a2aaa2891050d7b9 schema:familyName Okamoto
74 schema:givenName Tatsuaki
75 rdf:type schema:Person
76 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
77 schema:name Mathematical Sciences
78 rdf:type schema:DefinedTerm
79 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
80 schema:name Pure Mathematics
81 rdf:type schema:DefinedTerm
82 sg:person.012711653371.43 schema:affiliation grid-institutes:grid.46078.3d
83 schema:familyName Menezes
84 schema:givenName Alfred
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012711653371.43
86 rdf:type schema:Person
87 sg:person.014342226432.95 schema:affiliation grid-institutes:grid.5718.b
88 schema:familyName Weng
89 schema:givenName Annegret
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014342226432.95
91 rdf:type schema:Person
92 sg:person.016510414552.62 schema:affiliation grid-institutes:grid.46078.3d
93 schema:familyName Teske
94 schema:givenName Edlyn
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016510414552.62
96 rdf:type schema:Person
97 grid-institutes:grid.46078.3d schema:alternateName University of Waterloo, Canada
98 schema:name University of Waterloo, Canada
99 rdf:type schema:Organization
100 grid-institutes:grid.5718.b schema:alternateName University of Essen, Germany
101 schema:name University of Essen, Germany
102 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...