Computational Collapse of Quantum State with Application to Oblivious Transfer View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2004

AUTHORS

Claude Crépeau , Paul Dumais , Dominic Mayers , Louis Salvail

ABSTRACT

Quantum 2-party cryptography differs from its classical counterpart in at least one important way: Given blak-box access to a perfect commitment scheme there exists a secure 1-2 quantum oblivious transfer. This reduction proposed by Crépeau and Kilian was proved secure against any receiver by Yao, in the case where perfect commitments are used. However, quantum commitments would normally be based on computational assumptions. A natural question therefore arises: What happens to the security of the above reduction when computationally secure commitments are used instead of perfect ones? In this paper, we address the security of 1-2 QOT when computationally binding string commitments are available. In particular, we analyse the security of a primitive called Quantum Measurement Commitment when it is constructed from unconditionally concealing but computationally binding commitments. As measuring a quantum state induces an irreversible collapse, we describe a QMC as an instance of “computational collapse of a quantum state”. In a QMC a state appears to be collapsed to a polynomial time observer who cannot extract full information about the state without breaking a computational assumption. We reduce the security of QMC to a weak binding criteria for the string commitment. We also show that secure QMCs implies QOT using a straightforward variant of the reduction above. More... »

PAGES

374-393

References to SciGraph publications

  • 1992. Practical Quantum Oblivious Transfer in ADVANCES IN CRYPTOLOGY — CRYPTO ’91
  • 2000-12-01. Limits on the Provable Consequences of One-way Permutations in ADVANCES IN CRYPTOLOGY — CRYPTO’ 88
  • 2000. Perfectly Concealing Quantum Bit Commitment from any Quantum One-Way Permutation in ADVANCES IN CRYPTOLOGY — EUROCRYPT 2000
  • 2001-07-13. Quantum Key Distribution and String Oblivious Transfer in Noisy Channels in ADVANCES IN CRYPTOLOGY — CRYPTO ’96
  • 1998. Quantum bit commitment from a physical assumption in ADVANCES IN CRYPTOLOGY — CRYPTO '98
  • 2002-02-21. A Quantum Goldreich-Levin Theorem with Cryptographic Applications in STACS 2002
  • 2001-04-15. How to Convert the Flavor of a Quantum Bit Commitment in ADVANCES IN CRYPTOLOGY — EUROCRYPT 2001
  • Book

    TITLE

    Theory of Cryptography

    ISBN

    978-3-540-21000-9
    978-3-540-24638-1

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-540-24638-1_21

    DOI

    http://dx.doi.org/10.1007/978-3-540-24638-1_21

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1003066258


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Quantum Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "McGill University", 
              "id": "https://www.grid.ac/institutes/grid.14709.3b", 
              "name": [
                "School of Computer Science, McGill University"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cr\u00e9peau", 
            "givenName": "Claude", 
            "id": "sg:person.01127736412.71", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01127736412.71"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "McGill University", 
              "id": "https://www.grid.ac/institutes/grid.14709.3b", 
              "name": [
                "School of Computer Science, McGill University"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dumais", 
            "givenName": "Paul", 
            "id": "sg:person.015145424467.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015145424467.11"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "IQI, California Institute of Technology"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mayers", 
            "givenName": "Dominic", 
            "id": "sg:person.014634207425.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014634207425.30"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "BRICS, FICS Dept. of Computer Science, University of \u00c5rhus"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Salvail", 
            "givenName": "Louis", 
            "id": "sg:person.015641032177.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015641032177.34"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/3-540-45841-7_26", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005218766", 
              "https://doi.org/10.1007/3-540-45841-7_26"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-45841-7_26", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005218766", 
              "https://doi.org/10.1007/3-540-45841-7_26"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.78.3410", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005266632"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.78.3410", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005266632"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0055740", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008870766", 
              "https://doi.org/10.1007/bfb0055740"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-44987-6_5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010325175", 
              "https://doi.org/10.1007/3-540-44987-6_5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-44987-6_5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010325175", 
              "https://doi.org/10.1007/3-540-44987-6_5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/0-387-34799-2_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012197270", 
              "https://doi.org/10.1007/0-387-34799-2_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/0-387-34799-2_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012197270", 
              "https://doi.org/10.1007/0-387-34799-2_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-45539-6_21", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012221159", 
              "https://doi.org/10.1007/3-540-45539-6_21"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.78.3414", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013534453"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.78.3414", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013534453"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-46766-1_29", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027634682", 
              "https://doi.org/10.1007/3-540-46766-1_29"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/09500349414552291", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027766128"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-68697-5_26", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031344906", 
              "https://doi.org/10.1007/3-540-68697-5_26"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-68697-5_26", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031344906", 
              "https://doi.org/10.1007/3-540-68697-5_26"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/225058.225085", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044120059"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/sfcs.1988.21920", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086162079"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/sfcs.1982.45", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086226123"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/phycmp.1994.363696", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094329281"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/sfcs.2002.1181970", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094630480"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2004", 
        "datePublishedReg": "2004-01-01", 
        "description": "Quantum 2-party cryptography differs from its classical counterpart in at least one important way: Given blak-box access to a perfect commitment scheme there exists a secure 1-2 quantum oblivious transfer. This reduction proposed by Cr\u00e9peau and Kilian was proved secure against any receiver by Yao, in the case where perfect commitments are used. However, quantum commitments would normally be based on computational assumptions. A natural question therefore arises: What happens to the security of the above reduction when computationally secure commitments are used instead of perfect ones? In this paper, we address the security of 1-2 QOT when computationally binding string commitments are available. In particular, we analyse the security of a primitive called Quantum Measurement Commitment when it is constructed from unconditionally concealing but computationally binding commitments. As measuring a quantum state induces an irreversible collapse, we describe a QMC as an instance of \u201ccomputational collapse of a quantum state\u201d. In a QMC a state appears to be collapsed to a polynomial time observer who cannot extract full information about the state without breaking a computational assumption. We reduce the security of QMC to a weak binding criteria for the string commitment. We also show that secure QMCs implies QOT using a straightforward variant of the reduction above.", 
        "editor": [
          {
            "familyName": "Naor", 
            "givenName": "Moni", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-540-24638-1_21", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": {
          "isbn": [
            "978-3-540-21000-9", 
            "978-3-540-24638-1"
          ], 
          "name": "Theory of Cryptography", 
          "type": "Book"
        }, 
        "name": "Computational Collapse of Quantum State with Application to Oblivious Transfer", 
        "pagination": "374-393", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1003066258"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-540-24638-1_21"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "0e9b2bd74c86b6cec3ff37402b0ee9819f0e7ef4ad7cffe42a820d2ab9ed436f"
            ]
          }
        ], 
        "publisher": {
          "location": "Berlin, Heidelberg", 
          "name": "Springer Berlin Heidelberg", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-540-24638-1_21", 
          "https://app.dimensions.ai/details/publication/pub.1003066258"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-16T08:09", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000360_0000000360/records_118335_00000000.jsonl", 
        "type": "Chapter", 
        "url": "https://link.springer.com/10.1007%2F978-3-540-24638-1_21"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-24638-1_21'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-24638-1_21'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-24638-1_21'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-24638-1_21'


     

    This table displays all metadata directly associated to this object as RDF triples.

    142 TRIPLES      23 PREDICATES      42 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-540-24638-1_21 schema:about anzsrc-for:02
    2 anzsrc-for:0206
    3 schema:author N154511a3c8bd423189dc399d17ac2cca
    4 schema:citation sg:pub.10.1007/0-387-34799-2_2
    5 sg:pub.10.1007/3-540-44987-6_5
    6 sg:pub.10.1007/3-540-45539-6_21
    7 sg:pub.10.1007/3-540-45841-7_26
    8 sg:pub.10.1007/3-540-46766-1_29
    9 sg:pub.10.1007/3-540-68697-5_26
    10 sg:pub.10.1007/bfb0055740
    11 https://doi.org/10.1080/09500349414552291
    12 https://doi.org/10.1103/physrevlett.78.3410
    13 https://doi.org/10.1103/physrevlett.78.3414
    14 https://doi.org/10.1109/phycmp.1994.363696
    15 https://doi.org/10.1109/sfcs.1982.45
    16 https://doi.org/10.1109/sfcs.1988.21920
    17 https://doi.org/10.1109/sfcs.2002.1181970
    18 https://doi.org/10.1145/225058.225085
    19 schema:datePublished 2004
    20 schema:datePublishedReg 2004-01-01
    21 schema:description Quantum 2-party cryptography differs from its classical counterpart in at least one important way: Given blak-box access to a perfect commitment scheme there exists a secure 1-2 quantum oblivious transfer. This reduction proposed by Crépeau and Kilian was proved secure against any receiver by Yao, in the case where perfect commitments are used. However, quantum commitments would normally be based on computational assumptions. A natural question therefore arises: What happens to the security of the above reduction when computationally secure commitments are used instead of perfect ones? In this paper, we address the security of 1-2 QOT when computationally binding string commitments are available. In particular, we analyse the security of a primitive called Quantum Measurement Commitment when it is constructed from unconditionally concealing but computationally binding commitments. As measuring a quantum state induces an irreversible collapse, we describe a QMC as an instance of “computational collapse of a quantum state”. In a QMC a state appears to be collapsed to a polynomial time observer who cannot extract full information about the state without breaking a computational assumption. We reduce the security of QMC to a weak binding criteria for the string commitment. We also show that secure QMCs implies QOT using a straightforward variant of the reduction above.
    22 schema:editor N4818fc16620949c8aac827c3b2070db6
    23 schema:genre chapter
    24 schema:inLanguage en
    25 schema:isAccessibleForFree true
    26 schema:isPartOf Naceeee2e016e4d9bb76f474492107113
    27 schema:name Computational Collapse of Quantum State with Application to Oblivious Transfer
    28 schema:pagination 374-393
    29 schema:productId N15a17a8695e14e1a867368272e125b2d
    30 N33ff1c45cc284ea5ad683cc3f469bda7
    31 Na588d73d1d9c40d6be9c50a891bd7beb
    32 schema:publisher N2d2860bdc97c459793be1cac588d70d0
    33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003066258
    34 https://doi.org/10.1007/978-3-540-24638-1_21
    35 schema:sdDatePublished 2019-04-16T08:09
    36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    37 schema:sdPublisher N5101e3d3d2e84c848fb44a0903287e4e
    38 schema:url https://link.springer.com/10.1007%2F978-3-540-24638-1_21
    39 sgo:license sg:explorer/license/
    40 sgo:sdDataset chapters
    41 rdf:type schema:Chapter
    42 N154511a3c8bd423189dc399d17ac2cca rdf:first sg:person.01127736412.71
    43 rdf:rest N27012c5fb4ce4ee0907e47dcd42c6acd
    44 N15a17a8695e14e1a867368272e125b2d schema:name dimensions_id
    45 schema:value pub.1003066258
    46 rdf:type schema:PropertyValue
    47 N1fd4c3335def4e6e9b13ed822a339b7b schema:familyName Naor
    48 schema:givenName Moni
    49 rdf:type schema:Person
    50 N27012c5fb4ce4ee0907e47dcd42c6acd rdf:first sg:person.015145424467.11
    51 rdf:rest N950acafeaa5244038893d4903315fc62
    52 N2d2860bdc97c459793be1cac588d70d0 schema:location Berlin, Heidelberg
    53 schema:name Springer Berlin Heidelberg
    54 rdf:type schema:Organisation
    55 N33ff1c45cc284ea5ad683cc3f469bda7 schema:name readcube_id
    56 schema:value 0e9b2bd74c86b6cec3ff37402b0ee9819f0e7ef4ad7cffe42a820d2ab9ed436f
    57 rdf:type schema:PropertyValue
    58 N4818fc16620949c8aac827c3b2070db6 rdf:first N1fd4c3335def4e6e9b13ed822a339b7b
    59 rdf:rest rdf:nil
    60 N5101e3d3d2e84c848fb44a0903287e4e schema:name Springer Nature - SN SciGraph project
    61 rdf:type schema:Organization
    62 N62c094f342fe46b082b9b952521d24a1 schema:name IQI, California Institute of Technology
    63 rdf:type schema:Organization
    64 N8735d5a1214b4d40876f13b6153c25e8 schema:name BRICS, FICS Dept. of Computer Science, University of Århus
    65 rdf:type schema:Organization
    66 N8c75aa99ef9d49e5913bfd4e4e055dee rdf:first sg:person.015641032177.34
    67 rdf:rest rdf:nil
    68 N950acafeaa5244038893d4903315fc62 rdf:first sg:person.014634207425.30
    69 rdf:rest N8c75aa99ef9d49e5913bfd4e4e055dee
    70 Na588d73d1d9c40d6be9c50a891bd7beb schema:name doi
    71 schema:value 10.1007/978-3-540-24638-1_21
    72 rdf:type schema:PropertyValue
    73 Naceeee2e016e4d9bb76f474492107113 schema:isbn 978-3-540-21000-9
    74 978-3-540-24638-1
    75 schema:name Theory of Cryptography
    76 rdf:type schema:Book
    77 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    78 schema:name Physical Sciences
    79 rdf:type schema:DefinedTerm
    80 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
    81 schema:name Quantum Physics
    82 rdf:type schema:DefinedTerm
    83 sg:person.01127736412.71 schema:affiliation https://www.grid.ac/institutes/grid.14709.3b
    84 schema:familyName Crépeau
    85 schema:givenName Claude
    86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01127736412.71
    87 rdf:type schema:Person
    88 sg:person.014634207425.30 schema:affiliation N62c094f342fe46b082b9b952521d24a1
    89 schema:familyName Mayers
    90 schema:givenName Dominic
    91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014634207425.30
    92 rdf:type schema:Person
    93 sg:person.015145424467.11 schema:affiliation https://www.grid.ac/institutes/grid.14709.3b
    94 schema:familyName Dumais
    95 schema:givenName Paul
    96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015145424467.11
    97 rdf:type schema:Person
    98 sg:person.015641032177.34 schema:affiliation N8735d5a1214b4d40876f13b6153c25e8
    99 schema:familyName Salvail
    100 schema:givenName Louis
    101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015641032177.34
    102 rdf:type schema:Person
    103 sg:pub.10.1007/0-387-34799-2_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012197270
    104 https://doi.org/10.1007/0-387-34799-2_2
    105 rdf:type schema:CreativeWork
    106 sg:pub.10.1007/3-540-44987-6_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010325175
    107 https://doi.org/10.1007/3-540-44987-6_5
    108 rdf:type schema:CreativeWork
    109 sg:pub.10.1007/3-540-45539-6_21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012221159
    110 https://doi.org/10.1007/3-540-45539-6_21
    111 rdf:type schema:CreativeWork
    112 sg:pub.10.1007/3-540-45841-7_26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005218766
    113 https://doi.org/10.1007/3-540-45841-7_26
    114 rdf:type schema:CreativeWork
    115 sg:pub.10.1007/3-540-46766-1_29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027634682
    116 https://doi.org/10.1007/3-540-46766-1_29
    117 rdf:type schema:CreativeWork
    118 sg:pub.10.1007/3-540-68697-5_26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031344906
    119 https://doi.org/10.1007/3-540-68697-5_26
    120 rdf:type schema:CreativeWork
    121 sg:pub.10.1007/bfb0055740 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008870766
    122 https://doi.org/10.1007/bfb0055740
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1080/09500349414552291 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027766128
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1103/physrevlett.78.3410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005266632
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1103/physrevlett.78.3414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013534453
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1109/phycmp.1994.363696 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094329281
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1109/sfcs.1982.45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086226123
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1109/sfcs.1988.21920 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086162079
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1109/sfcs.2002.1181970 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094630480
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1145/225058.225085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044120059
    139 rdf:type schema:CreativeWork
    140 https://www.grid.ac/institutes/grid.14709.3b schema:alternateName McGill University
    141 schema:name School of Computer Science, McGill University
    142 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...