Algorithmic Tamper-Proof (ATP) Security: Theoretical Foundations for Security against Hardware Tampering View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2004

AUTHORS

Rosario Gennaro , Anna Lysyanskaya , Tal Malkin , Silvio Micali , Tal Rabin

ABSTRACT

Traditionally, secure cryptographic algorithms provide security against an adversary who has only black-box access to the secret information of honest parties. However, such models are not always adequate. In particular, the security of these algorithms may completely break under (feasible) attacks that tamper with the secret key.In this paper we propose a theoretical framework to investigate the algorithmic aspects related to tamper-proof security. In particular, we define a model of security against an adversary who is allowed to apply arbitrary feasible functions f to the secret key sk, and obtain the result of the cryptographic algorithms using the new secret key f(sk).We prove that in the most general setting it is impossible to achieve this strong notion of security. We then show minimal additions to the model, which are needed in order to obtain provable security.We prove that these additions are necessary and also sufficient for most common cryptographic primitives, such as encryption and signature schemes.We discuss the applications to portable devices protected by PINs and show how to integrate PIN security into the generic security design.Finally we investigate restrictions of the model in which the tampering powers of the adversary are limited. These restrictions model realistic attacks (like differential fault analysis) that have been demonstrated in practice. In these settings we show security solutions that work even without the additions mentioned above. More... »

PAGES

258-277

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-24638-1_15

DOI

http://dx.doi.org/10.1007/978-3-540-24638-1_15

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019679058


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0804", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Data Format", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "IBM T.J. Watson Research Center", 
          "id": "http://www.grid.ac/institutes/grid.481554.9", 
          "name": [
            "IBM T.J. Watson Research Center"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gennaro", 
        "givenName": "Rosario", 
        "id": "sg:person.013573255563.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013573255563.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, Brown University", 
          "id": "http://www.grid.ac/institutes/grid.40263.33", 
          "name": [
            "Department of Computer Science, Brown University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lysyanskaya", 
        "givenName": "Anna", 
        "id": "sg:person.012353217556.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012353217556.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, Columbia University", 
          "id": "http://www.grid.ac/institutes/grid.21729.3f", 
          "name": [
            "Department of Computer Science, Columbia University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Malkin", 
        "givenName": "Tal", 
        "id": "sg:person.010754714131.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010754714131.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "M.I.T. Laboratory for Computer Science", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "M.I.T. Laboratory for Computer Science"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Micali", 
        "givenName": "Silvio", 
        "id": "sg:person.013514725641.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013514725641.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM T.J. Watson Research Center", 
          "id": "http://www.grid.ac/institutes/grid.481554.9", 
          "name": [
            "IBM T.J. Watson Research Center"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rabin", 
        "givenName": "Tal", 
        "id": "sg:person.015473523512.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015473523512.58"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2004", 
    "datePublishedReg": "2004-01-01", 
    "description": "Traditionally, secure cryptographic algorithms provide security against an adversary who has only black-box access to the secret information of honest parties. However, such models are not always adequate. In particular, the security of these algorithms may completely break under (feasible) attacks that tamper with the secret key.In this paper we propose a theoretical framework to investigate the algorithmic aspects related to tamper-proof security. In particular, we define a model of security against an adversary who is allowed to apply arbitrary feasible functions f to the secret key sk, and obtain the result of the cryptographic algorithms using the new secret key f(sk).We prove that in the most general setting it is impossible to achieve this strong notion of security. We then show minimal additions to the model, which are needed in order to obtain provable security.We prove that these additions are necessary and also sufficient for most common cryptographic primitives, such as encryption and signature schemes.We discuss the applications to portable devices protected by PINs and show how to integrate PIN security into the generic security design.Finally we investigate restrictions of the model in which the tampering powers of the adversary are limited. These restrictions model realistic attacks (like differential fault analysis) that have been demonstrated in practice. In these settings we show security solutions that work even without the additions mentioned above.", 
    "editor": [
      {
        "familyName": "Naor", 
        "givenName": "Moni", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-24638-1_15", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-21000-9", 
        "978-3-540-24638-1"
      ], 
      "name": "Theory of Cryptography", 
      "type": "Book"
    }, 
    "keywords": [
      "cryptographic algorithms", 
      "secret key", 
      "common cryptographic primitives", 
      "model of security", 
      "black-box access", 
      "security solutions", 
      "secret information", 
      "cryptographic primitives", 
      "realistic attacks", 
      "provable security", 
      "security design", 
      "signature scheme", 
      "honest parties", 
      "algorithmic aspects", 
      "adversary", 
      "security", 
      "stronger notion", 
      "algorithm", 
      "portable devices", 
      "attacks", 
      "such models", 
      "theoretical foundation", 
      "encryption", 
      "minimal addition", 
      "hardware", 
      "primitives", 
      "key", 
      "scheme", 
      "framework", 
      "model", 
      "information", 
      "access", 
      "applications", 
      "devices", 
      "theoretical framework", 
      "design", 
      "solution", 
      "parties", 
      "foundation", 
      "order", 
      "restriction", 
      "notion", 
      "aspects", 
      "function f", 
      "power", 
      "results", 
      "addition", 
      "setting", 
      "practice", 
      "pin", 
      "paper"
    ], 
    "name": "Algorithmic Tamper-Proof (ATP) Security: Theoretical Foundations for Security against Hardware Tampering", 
    "pagination": "258-277", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019679058"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-24638-1_15"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-24638-1_15", 
      "https://app.dimensions.ai/details/publication/pub.1019679058"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-20T07:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_51.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-540-24638-1_15"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-24638-1_15'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-24638-1_15'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-24638-1_15'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-24638-1_15'


 

This table displays all metadata directly associated to this object as RDF triples.

152 TRIPLES      23 PREDICATES      78 URIs      70 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-24638-1_15 schema:about anzsrc-for:08
2 anzsrc-for:0802
3 anzsrc-for:0804
4 schema:author Na0bc71490d414ac8943fb6e78d912fdf
5 schema:datePublished 2004
6 schema:datePublishedReg 2004-01-01
7 schema:description Traditionally, secure cryptographic algorithms provide security against an adversary who has only black-box access to the secret information of honest parties. However, such models are not always adequate. In particular, the security of these algorithms may completely break under (feasible) attacks that tamper with the secret key.In this paper we propose a theoretical framework to investigate the algorithmic aspects related to tamper-proof security. In particular, we define a model of security against an adversary who is allowed to apply arbitrary feasible functions f to the secret key sk, and obtain the result of the cryptographic algorithms using the new secret key f(sk).We prove that in the most general setting it is impossible to achieve this strong notion of security. We then show minimal additions to the model, which are needed in order to obtain provable security.We prove that these additions are necessary and also sufficient for most common cryptographic primitives, such as encryption and signature schemes.We discuss the applications to portable devices protected by PINs and show how to integrate PIN security into the generic security design.Finally we investigate restrictions of the model in which the tampering powers of the adversary are limited. These restrictions model realistic attacks (like differential fault analysis) that have been demonstrated in practice. In these settings we show security solutions that work even without the additions mentioned above.
8 schema:editor N0dfee628d38e4aa2af542f4b750228b3
9 schema:genre chapter
10 schema:inLanguage en
11 schema:isAccessibleForFree true
12 schema:isPartOf N781da1cb340e45aa9d932e80836d997c
13 schema:keywords access
14 addition
15 adversary
16 algorithm
17 algorithmic aspects
18 applications
19 aspects
20 attacks
21 black-box access
22 common cryptographic primitives
23 cryptographic algorithms
24 cryptographic primitives
25 design
26 devices
27 encryption
28 foundation
29 framework
30 function f
31 hardware
32 honest parties
33 information
34 key
35 minimal addition
36 model
37 model of security
38 notion
39 order
40 paper
41 parties
42 pin
43 portable devices
44 power
45 practice
46 primitives
47 provable security
48 realistic attacks
49 restriction
50 results
51 scheme
52 secret information
53 secret key
54 security
55 security design
56 security solutions
57 setting
58 signature scheme
59 solution
60 stronger notion
61 such models
62 theoretical foundation
63 theoretical framework
64 schema:name Algorithmic Tamper-Proof (ATP) Security: Theoretical Foundations for Security against Hardware Tampering
65 schema:pagination 258-277
66 schema:productId Nd60c9c66390540e4803b638d600f4d3c
67 Ne7d675c871f047d9a5795eec8cd2dd75
68 schema:publisher N3d6c758da423416c91dfe0c12d120b3c
69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019679058
70 https://doi.org/10.1007/978-3-540-24638-1_15
71 schema:sdDatePublished 2022-05-20T07:49
72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
73 schema:sdPublisher N927c0824d1644054a5f54b8e53f3cc8a
74 schema:url https://doi.org/10.1007/978-3-540-24638-1_15
75 sgo:license sg:explorer/license/
76 sgo:sdDataset chapters
77 rdf:type schema:Chapter
78 N0dfee628d38e4aa2af542f4b750228b3 rdf:first N1ef478ae0e8f4a3c95421159255f9612
79 rdf:rest rdf:nil
80 N1ef478ae0e8f4a3c95421159255f9612 schema:familyName Naor
81 schema:givenName Moni
82 rdf:type schema:Person
83 N22df2bf0613f461f90f12f26113ab82b rdf:first sg:person.010754714131.90
84 rdf:rest Nbe6c3bcca35041c389b14345b5c70297
85 N3d6c758da423416c91dfe0c12d120b3c schema:name Springer Nature
86 rdf:type schema:Organisation
87 N781da1cb340e45aa9d932e80836d997c schema:isbn 978-3-540-21000-9
88 978-3-540-24638-1
89 schema:name Theory of Cryptography
90 rdf:type schema:Book
91 N927c0824d1644054a5f54b8e53f3cc8a schema:name Springer Nature - SN SciGraph project
92 rdf:type schema:Organization
93 Na0bc71490d414ac8943fb6e78d912fdf rdf:first sg:person.013573255563.35
94 rdf:rest Ncc30c0209d99408a8c2207257edcba05
95 Nb9b3ce099b864ba6bcea13616f7a4afa rdf:first sg:person.015473523512.58
96 rdf:rest rdf:nil
97 Nbe6c3bcca35041c389b14345b5c70297 rdf:first sg:person.013514725641.60
98 rdf:rest Nb9b3ce099b864ba6bcea13616f7a4afa
99 Ncc30c0209d99408a8c2207257edcba05 rdf:first sg:person.012353217556.73
100 rdf:rest N22df2bf0613f461f90f12f26113ab82b
101 Nd60c9c66390540e4803b638d600f4d3c schema:name doi
102 schema:value 10.1007/978-3-540-24638-1_15
103 rdf:type schema:PropertyValue
104 Ne7d675c871f047d9a5795eec8cd2dd75 schema:name dimensions_id
105 schema:value pub.1019679058
106 rdf:type schema:PropertyValue
107 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
108 schema:name Information and Computing Sciences
109 rdf:type schema:DefinedTerm
110 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
111 schema:name Computation Theory and Mathematics
112 rdf:type schema:DefinedTerm
113 anzsrc-for:0804 schema:inDefinedTermSet anzsrc-for:
114 schema:name Data Format
115 rdf:type schema:DefinedTerm
116 sg:person.010754714131.90 schema:affiliation grid-institutes:grid.21729.3f
117 schema:familyName Malkin
118 schema:givenName Tal
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010754714131.90
120 rdf:type schema:Person
121 sg:person.012353217556.73 schema:affiliation grid-institutes:grid.40263.33
122 schema:familyName Lysyanskaya
123 schema:givenName Anna
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012353217556.73
125 rdf:type schema:Person
126 sg:person.013514725641.60 schema:affiliation grid-institutes:None
127 schema:familyName Micali
128 schema:givenName Silvio
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013514725641.60
130 rdf:type schema:Person
131 sg:person.013573255563.35 schema:affiliation grid-institutes:grid.481554.9
132 schema:familyName Gennaro
133 schema:givenName Rosario
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013573255563.35
135 rdf:type schema:Person
136 sg:person.015473523512.58 schema:affiliation grid-institutes:grid.481554.9
137 schema:familyName Rabin
138 schema:givenName Tal
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015473523512.58
140 rdf:type schema:Person
141 grid-institutes:None schema:alternateName M.I.T. Laboratory for Computer Science
142 schema:name M.I.T. Laboratory for Computer Science
143 rdf:type schema:Organization
144 grid-institutes:grid.21729.3f schema:alternateName Department of Computer Science, Columbia University
145 schema:name Department of Computer Science, Columbia University
146 rdf:type schema:Organization
147 grid-institutes:grid.40263.33 schema:alternateName Department of Computer Science, Brown University
148 schema:name Department of Computer Science, Brown University
149 rdf:type schema:Organization
150 grid-institutes:grid.481554.9 schema:alternateName IBM T.J. Watson Research Center
151 schema:name IBM T.J. Watson Research Center
152 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...