On Cyclic Top-Associative Generalized Galois Rings View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2004

AUTHORS

Santos González , Viktor T. Markov , Consuelo Martínez , Aleksandr A. Nechaev , Ignacio F. Rúa

ABSTRACT

A Generalized Galois Ring (GGR) S is a finite nonassociative ring with identity of characteristic pn, for a prime number p, such that its top-factor is a finite semifield. It is well known that if S is an associative Galois Ring (GR) then the set is a finite multiplicative abelian group. This group is cyclic if and only if S is either a finite field, or a residual integer ring of odd characteristic or the ring ℤ4. A GGR is called top-associative if is a finite field. In this paper we study the conditions for a top-associative not associative GGR S to be cyclic. More... »

PAGES

25-39

Book

TITLE

Finite Fields and Applications

ISBN

978-3-540-21324-6
978-3-540-24633-6

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-24633-6_3

DOI

http://dx.doi.org/10.1007/978-3-540-24633-6_3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1037367046


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Oviedo", 
          "id": "https://www.grid.ac/institutes/grid.10863.3c", 
          "name": [
            "Departamento de Matem\u00e1ticas, Universidad de Oviedo, 33007, Oviedo, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gonz\u00e1lez", 
        "givenName": "Santos", 
        "id": "sg:person.016661036521.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016661036521.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow State University", 
          "id": "https://www.grid.ac/institutes/grid.14476.30", 
          "name": [
            "Center of New Information Technologies, Moscow State University, 119899, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Markov", 
        "givenName": "Viktor T.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Oviedo", 
          "id": "https://www.grid.ac/institutes/grid.10863.3c", 
          "name": [
            "Departamento de Matem\u00e1ticas, Universidad de Oviedo, 33007, Oviedo, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mart\u00ednez", 
        "givenName": "Consuelo", 
        "id": "sg:person.015261576461.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015261576461.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow State University", 
          "id": "https://www.grid.ac/institutes/grid.14476.30", 
          "name": [
            "Center of New Information Technologies, Moscow State University, 119899, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nechaev", 
        "givenName": "Aleksandr A.", 
        "id": "sg:person.015563433723.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015563433723.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Oviedo", 
          "id": "https://www.grid.ac/institutes/grid.10863.3c", 
          "name": [
            "Departamento de Matem\u00e1ticas, Universidad de Oviedo, 33007, Oviedo, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "R\u00faa", 
        "givenName": "Ignacio F.", 
        "id": "sg:person.014421715417.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014421715417.87"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1090/s0002-9947-1966-0210699-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002187469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01498378", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003411958", 
          "https://doi.org/10.1007/bf01498378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01498378", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003411958", 
          "https://doi.org/10.1007/bf01498378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-46796-3_36", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005674163", 
          "https://doi.org/10.1007/3-540-46796-3_36"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-8693(65)90018-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005807980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-63163-1_22", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009209862", 
          "https://doi.org/10.1007/3-540-63163-1_22"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02227457", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016228090", 
          "https://doi.org/10.1007/bf02227457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02227457", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016228090", 
          "https://doi.org/10.1007/bf02227457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0012-365x(99)00068-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017582655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02362772", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018155263", 
          "https://doi.org/10.1007/bf02362772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02362772", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018155263", 
          "https://doi.org/10.1007/bf02362772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00927870500274796", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020158398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02341873", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024760787", 
          "https://doi.org/10.1007/bf02341873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00181539", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031954003", 
          "https://doi.org/10.1007/bf00181539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00181539", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031954003", 
          "https://doi.org/10.1007/bf00181539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01669503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038526014", 
          "https://doi.org/10.1007/bf01669503"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/sm1994v078n02abeh003470", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058201202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0219498804000678", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062995505"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004", 
    "datePublishedReg": "2004-01-01", 
    "description": "A Generalized Galois Ring (GGR) S is a finite nonassociative ring with identity of characteristic pn, for a prime number p, such that its top-factor is a finite semifield. It is well known that if S is an associative Galois Ring (GR) then the set is a finite multiplicative abelian group. This group is cyclic if and only if S is either a finite field, or a residual integer ring of odd characteristic or the ring \u21244. A GGR is called top-associative if is a finite field. In this paper we study the conditions for a top-associative not associative GGR S to be cyclic.", 
    "editor": [
      {
        "familyName": "Mullen", 
        "givenName": "Gary L.", 
        "type": "Person"
      }, 
      {
        "familyName": "Poli", 
        "givenName": "Alain", 
        "type": "Person"
      }, 
      {
        "familyName": "Stichtenoth", 
        "givenName": "Henning", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-24633-6_3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-21324-6", 
        "978-3-540-24633-6"
      ], 
      "name": "Finite Fields and Applications", 
      "type": "Book"
    }, 
    "name": "On Cyclic Top-Associative Generalized Galois Rings", 
    "pagination": "25-39", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1037367046"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-24633-6_3"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b20077749ad0cab9bd4b6362e3d86d2ab5c58010795f7f951b4b7d59bd64fae0"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-24633-6_3", 
      "https://app.dimensions.ai/details/publication/pub.1037367046"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T08:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000360_0000000360/records_118309_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-540-24633-6_3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-24633-6_3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-24633-6_3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-24633-6_3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-24633-6_3'


 

This table displays all metadata directly associated to this object as RDF triples.

155 TRIPLES      23 PREDICATES      41 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-24633-6_3 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N278dad81830d47e3b0c23924930f3404
4 schema:citation sg:pub.10.1007/3-540-46796-3_36
5 sg:pub.10.1007/3-540-63163-1_22
6 sg:pub.10.1007/bf00181539
7 sg:pub.10.1007/bf01498378
8 sg:pub.10.1007/bf01669503
9 sg:pub.10.1007/bf02227457
10 sg:pub.10.1007/bf02341873
11 sg:pub.10.1007/bf02362772
12 https://doi.org/10.1016/0021-8693(65)90018-9
13 https://doi.org/10.1016/s0012-365x(99)00068-0
14 https://doi.org/10.1070/sm1994v078n02abeh003470
15 https://doi.org/10.1080/00927870500274796
16 https://doi.org/10.1090/s0002-9947-1966-0210699-5
17 https://doi.org/10.1142/s0219498804000678
18 schema:datePublished 2004
19 schema:datePublishedReg 2004-01-01
20 schema:description A Generalized Galois Ring (GGR) S is a finite nonassociative ring with identity of characteristic pn, for a prime number p, such that its top-factor is a finite semifield. It is well known that if S is an associative Galois Ring (GR) then the set is a finite multiplicative abelian group. This group is cyclic if and only if S is either a finite field, or a residual integer ring of odd characteristic or the ring ℤ4. A GGR is called top-associative if is a finite field. In this paper we study the conditions for a top-associative not associative GGR S to be cyclic.
21 schema:editor N42b25d93bdc244519b156dce9a0eb4ec
22 schema:genre chapter
23 schema:inLanguage en
24 schema:isAccessibleForFree false
25 schema:isPartOf N293c371e7ec445a49131d96f2957b0ec
26 schema:name On Cyclic Top-Associative Generalized Galois Rings
27 schema:pagination 25-39
28 schema:productId N2733caeb4b0143ac80516a860759f822
29 N28fef08670884a6bbc00d2528d835fef
30 N8ebea2953dfe4d22b0a945d636de96ce
31 schema:publisher N92acbaa0369b42a9b62b4a0cf607ce6d
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037367046
33 https://doi.org/10.1007/978-3-540-24633-6_3
34 schema:sdDatePublished 2019-04-16T08:07
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher Nbb06eef0bd874604867b3e81e416f0cd
37 schema:url https://link.springer.com/10.1007%2F978-3-540-24633-6_3
38 sgo:license sg:explorer/license/
39 sgo:sdDataset chapters
40 rdf:type schema:Chapter
41 N18c4b1143b2e4d47b966e8adeab0028a rdf:first sg:person.015563433723.06
42 rdf:rest Ne9eb6b5445484ac488d240036495aee4
43 N2733caeb4b0143ac80516a860759f822 schema:name doi
44 schema:value 10.1007/978-3-540-24633-6_3
45 rdf:type schema:PropertyValue
46 N278dad81830d47e3b0c23924930f3404 rdf:first sg:person.016661036521.95
47 rdf:rest Neab034ed6c5e45aa9a595f312119edfe
48 N287e8635c03a46c69a9ce0470ab5d707 schema:familyName Poli
49 schema:givenName Alain
50 rdf:type schema:Person
51 N28fef08670884a6bbc00d2528d835fef schema:name readcube_id
52 schema:value b20077749ad0cab9bd4b6362e3d86d2ab5c58010795f7f951b4b7d59bd64fae0
53 rdf:type schema:PropertyValue
54 N293c371e7ec445a49131d96f2957b0ec schema:isbn 978-3-540-21324-6
55 978-3-540-24633-6
56 schema:name Finite Fields and Applications
57 rdf:type schema:Book
58 N2957781fe54b4f62ba23e0b22d985223 rdf:first N31f92754959748f8a92ef28815e90a8b
59 rdf:rest rdf:nil
60 N31f92754959748f8a92ef28815e90a8b schema:familyName Stichtenoth
61 schema:givenName Henning
62 rdf:type schema:Person
63 N3a66f035c2d34734bb7a8aded24a4eb1 rdf:first sg:person.015261576461.61
64 rdf:rest N18c4b1143b2e4d47b966e8adeab0028a
65 N42b25d93bdc244519b156dce9a0eb4ec rdf:first N91bca37db46e41298cc601692f4a7e08
66 rdf:rest N592b2509b2ab4f2daad14d5ad8eec1d2
67 N592b2509b2ab4f2daad14d5ad8eec1d2 rdf:first N287e8635c03a46c69a9ce0470ab5d707
68 rdf:rest N2957781fe54b4f62ba23e0b22d985223
69 N8ebea2953dfe4d22b0a945d636de96ce schema:name dimensions_id
70 schema:value pub.1037367046
71 rdf:type schema:PropertyValue
72 N91bca37db46e41298cc601692f4a7e08 schema:familyName Mullen
73 schema:givenName Gary L.
74 rdf:type schema:Person
75 N92acbaa0369b42a9b62b4a0cf607ce6d schema:location Berlin, Heidelberg
76 schema:name Springer Berlin Heidelberg
77 rdf:type schema:Organisation
78 Nbb06eef0bd874604867b3e81e416f0cd schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 Nd4d657c0c4fd428aadec0118b93ac6ba schema:affiliation https://www.grid.ac/institutes/grid.14476.30
81 schema:familyName Markov
82 schema:givenName Viktor T.
83 rdf:type schema:Person
84 Ne9eb6b5445484ac488d240036495aee4 rdf:first sg:person.014421715417.87
85 rdf:rest rdf:nil
86 Neab034ed6c5e45aa9a595f312119edfe rdf:first Nd4d657c0c4fd428aadec0118b93ac6ba
87 rdf:rest N3a66f035c2d34734bb7a8aded24a4eb1
88 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
89 schema:name Mathematical Sciences
90 rdf:type schema:DefinedTerm
91 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
92 schema:name Pure Mathematics
93 rdf:type schema:DefinedTerm
94 sg:person.014421715417.87 schema:affiliation https://www.grid.ac/institutes/grid.10863.3c
95 schema:familyName Rúa
96 schema:givenName Ignacio F.
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014421715417.87
98 rdf:type schema:Person
99 sg:person.015261576461.61 schema:affiliation https://www.grid.ac/institutes/grid.10863.3c
100 schema:familyName Martínez
101 schema:givenName Consuelo
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015261576461.61
103 rdf:type schema:Person
104 sg:person.015563433723.06 schema:affiliation https://www.grid.ac/institutes/grid.14476.30
105 schema:familyName Nechaev
106 schema:givenName Aleksandr A.
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015563433723.06
108 rdf:type schema:Person
109 sg:person.016661036521.95 schema:affiliation https://www.grid.ac/institutes/grid.10863.3c
110 schema:familyName González
111 schema:givenName Santos
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016661036521.95
113 rdf:type schema:Person
114 sg:pub.10.1007/3-540-46796-3_36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005674163
115 https://doi.org/10.1007/3-540-46796-3_36
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/3-540-63163-1_22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009209862
118 https://doi.org/10.1007/3-540-63163-1_22
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/bf00181539 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031954003
121 https://doi.org/10.1007/bf00181539
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/bf01498378 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003411958
124 https://doi.org/10.1007/bf01498378
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/bf01669503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038526014
127 https://doi.org/10.1007/bf01669503
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/bf02227457 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016228090
130 https://doi.org/10.1007/bf02227457
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/bf02341873 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024760787
133 https://doi.org/10.1007/bf02341873
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/bf02362772 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018155263
136 https://doi.org/10.1007/bf02362772
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/0021-8693(65)90018-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005807980
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/s0012-365x(99)00068-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017582655
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1070/sm1994v078n02abeh003470 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058201202
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1080/00927870500274796 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020158398
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1090/s0002-9947-1966-0210699-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002187469
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1142/s0219498804000678 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062995505
149 rdf:type schema:CreativeWork
150 https://www.grid.ac/institutes/grid.10863.3c schema:alternateName University of Oviedo
151 schema:name Departamento de Matemáticas, Universidad de Oviedo, 33007, Oviedo, Spain
152 rdf:type schema:Organization
153 https://www.grid.ac/institutes/grid.14476.30 schema:alternateName Moscow State University
154 schema:name Center of New Information Technologies, Moscow State University, 119899, Moscow, Russia
155 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...