2004
AUTHORSSantos González , Viktor T. Markov , Consuelo Martínez , Aleksandr A. Nechaev , Ignacio F. Rúa
ABSTRACTA Generalized Galois Ring (GGR) S is a finite nonassociative ring with identity of characteristic pn, for a prime number p, such that its top-factor is a finite semifield. It is well known that if S is an associative Galois Ring (GR) then the set is a finite multiplicative abelian group. This group is cyclic if and only if S is either a finite field, or a residual integer ring of odd characteristic or the ring ℤ4. A GGR is called top-associative if is a finite field. In this paper we study the conditions for a top-associative not associative GGR S to be cyclic. More... »
PAGES25-39
Finite Fields and Applications
ISBN
978-3-540-21324-6
978-3-540-24633-6
http://scigraph.springernature.com/pub.10.1007/978-3-540-24633-6_3
DOIhttp://dx.doi.org/10.1007/978-3-540-24633-6_3
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1037367046
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "University of Oviedo",
"id": "https://www.grid.ac/institutes/grid.10863.3c",
"name": [
"Departamento de Matem\u00e1ticas, Universidad de Oviedo, 33007, Oviedo, Spain"
],
"type": "Organization"
},
"familyName": "Gonz\u00e1lez",
"givenName": "Santos",
"id": "sg:person.016661036521.95",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016661036521.95"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Moscow State University",
"id": "https://www.grid.ac/institutes/grid.14476.30",
"name": [
"Center of New Information Technologies, Moscow State University, 119899, Moscow, Russia"
],
"type": "Organization"
},
"familyName": "Markov",
"givenName": "Viktor T.",
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Oviedo",
"id": "https://www.grid.ac/institutes/grid.10863.3c",
"name": [
"Departamento de Matem\u00e1ticas, Universidad de Oviedo, 33007, Oviedo, Spain"
],
"type": "Organization"
},
"familyName": "Mart\u00ednez",
"givenName": "Consuelo",
"id": "sg:person.015261576461.61",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015261576461.61"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Moscow State University",
"id": "https://www.grid.ac/institutes/grid.14476.30",
"name": [
"Center of New Information Technologies, Moscow State University, 119899, Moscow, Russia"
],
"type": "Organization"
},
"familyName": "Nechaev",
"givenName": "Aleksandr A.",
"id": "sg:person.015563433723.06",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015563433723.06"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Oviedo",
"id": "https://www.grid.ac/institutes/grid.10863.3c",
"name": [
"Departamento de Matem\u00e1ticas, Universidad de Oviedo, 33007, Oviedo, Spain"
],
"type": "Organization"
},
"familyName": "R\u00faa",
"givenName": "Ignacio F.",
"id": "sg:person.014421715417.87",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014421715417.87"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1090/s0002-9947-1966-0210699-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1002187469"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01498378",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003411958",
"https://doi.org/10.1007/bf01498378"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01498378",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003411958",
"https://doi.org/10.1007/bf01498378"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/3-540-46796-3_36",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005674163",
"https://doi.org/10.1007/3-540-46796-3_36"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0021-8693(65)90018-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005807980"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/3-540-63163-1_22",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009209862",
"https://doi.org/10.1007/3-540-63163-1_22"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02227457",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1016228090",
"https://doi.org/10.1007/bf02227457"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02227457",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1016228090",
"https://doi.org/10.1007/bf02227457"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0012-365x(99)00068-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017582655"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02362772",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1018155263",
"https://doi.org/10.1007/bf02362772"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02362772",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1018155263",
"https://doi.org/10.1007/bf02362772"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/00927870500274796",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020158398"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02341873",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024760787",
"https://doi.org/10.1007/bf02341873"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00181539",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031954003",
"https://doi.org/10.1007/bf00181539"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00181539",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031954003",
"https://doi.org/10.1007/bf00181539"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01669503",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038526014",
"https://doi.org/10.1007/bf01669503"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1070/sm1994v078n02abeh003470",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1058201202"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1142/s0219498804000678",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062995505"
],
"type": "CreativeWork"
}
],
"datePublished": "2004",
"datePublishedReg": "2004-01-01",
"description": "A Generalized Galois Ring (GGR) S is a finite nonassociative ring with identity of characteristic pn, for a prime number p, such that its top-factor is a finite semifield. It is well known that if S is an associative Galois Ring (GR) then the set is a finite multiplicative abelian group. This group is cyclic if and only if S is either a finite field, or a residual integer ring of odd characteristic or the ring \u21244. A GGR is called top-associative if is a finite field. In this paper we study the conditions for a top-associative not associative GGR S to be cyclic.",
"editor": [
{
"familyName": "Mullen",
"givenName": "Gary L.",
"type": "Person"
},
{
"familyName": "Poli",
"givenName": "Alain",
"type": "Person"
},
{
"familyName": "Stichtenoth",
"givenName": "Henning",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-540-24633-6_3",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-540-21324-6",
"978-3-540-24633-6"
],
"name": "Finite Fields and Applications",
"type": "Book"
},
"name": "On Cyclic Top-Associative Generalized Galois Rings",
"pagination": "25-39",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1037367046"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-540-24633-6_3"
]
},
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"b20077749ad0cab9bd4b6362e3d86d2ab5c58010795f7f951b4b7d59bd64fae0"
]
}
],
"publisher": {
"location": "Berlin, Heidelberg",
"name": "Springer Berlin Heidelberg",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-540-24633-6_3",
"https://app.dimensions.ai/details/publication/pub.1037367046"
],
"sdDataset": "chapters",
"sdDatePublished": "2019-04-16T08:07",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000360_0000000360/records_118309_00000000.jsonl",
"type": "Chapter",
"url": "https://link.springer.com/10.1007%2F978-3-540-24633-6_3"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-24633-6_3'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-24633-6_3'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-24633-6_3'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-24633-6_3'
This table displays all metadata directly associated to this object as RDF triples.
155 TRIPLES
23 PREDICATES
41 URIs
20 LITERALS
8 BLANK NODES