A New Variant of the Matsumoto-Imai Cryptosystem through Perturbation View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2004

AUTHORS

Jintai Ding

ABSTRACT

Though the multivariable cryptosystems first suggested by Matsumoto and Imai was defeated by the linearization method of Patarin due to the special properties of the Matsumoto-Imai (MI) cryptosystem, many variants and extensions of the MI system were suggested mainly by Patarin and his collaborators. In this paper, we propose a new variant of the MI system, which was inspired by the idea of “perturbation”. This method uses a set of r (a small number) linearly independent linear functions \(z_i=\sum_{j=1}^n \alpha_{ij} x_j+\beta_i,\) i=1,..,r, over the variables x i , which are variables of the MI system. The perturbation is performed by adding random quadratic function of z i to the MI systems. The difference between our idea and a very similar idea of the Hidden Field Equation and Oil-Vinegar system is that our perturbation is internal, where we do not introduce any new variables, while the Hidden Field Equation and Oil-Vinegar system is an “external” perturbation of the HFE system, where a few extra (external) new variables are introduced to perform the perturbation. A practical implementation example of 136 bits, its security analysis and efficiency analysis are presented. The attack complexity of this perturbed Matsumoto-Imai cryptosystem is estimated. More... »

PAGES

305-318

References to SciGraph publications

  • 2001-07-13. Hidden Fields Equations (HFE) and Isomorphisms of Polynomials (IP): Two New Families of Asymmetric Algorithms in ADVANCES IN CRYPTOLOGY — EUROCRYPT ’96
  • 2000-06. Cryptanalysis of the Matsumoto and Imai Public Key Scheme of Eurocrypt'98 in DESIGNS, CODES AND CRYPTOGRAPHY
  • 2003. Algebraic Cryptanalysis of Hidden Field Equation (HFE) Cryptosystems Using Gröbner Bases in ADVANCES IN CRYPTOLOGY - CRYPTO 2003
  • 2002-09-24. C−+* and HM: Variations Around Two Schemes of T. Matsumoto and H. Imai in ADVANCES IN CRYPTOLOGY — ASIACRYPT’98
  • 1988. Public Quadratic Polynomial-Tuples for Efficient Signature-Verification and Message-Encryption in ADVANCES IN CRYPTOLOGY — EUROCRYPT ’88
  • 2001-07-13. Efficient Signature Schemes Based on Birational Permutations in ADVANCES IN CRYPTOLOGY — CRYPTO’ 93
  • 2001. The Security of Hidden Field Equations (HFE) in TOPICS IN CRYPTOLOGY — CT-RSA 2001
  • 2003. A Fast and Secure Implementation of Sflash in PUBLIC KEY CRYPTOGRAPHY — PKC 2003
  • 2003. On the Security of HFE, HFEv- and Quartz in PUBLIC KEY CRYPTOGRAPHY — PKC 2003
  • 1999. Cryptanalysis of the HFE Public Key Cryptosystem by Relinearization in ADVANCES IN CRYPTOLOGY — CRYPTO’ 99
  • 2001. FLASH, a Fast Multivariate Signature Algorithm in TOPICS IN CRYPTOLOGY — CT-RSA 2001
  • 2003-02-28. About the XL Algorithm over GF(2) in TOPICS IN CRYPTOLOGY — CT-RSA 2003
  • 2001. QUARTZ, 128-Bit Long Digital Signatures in TOPICS IN CRYPTOLOGY — CT-RSA 2001
  • 2000. Efficient Algorithms for Solving Overdefined Systems of Multivariate Polynomial Equations in ADVANCES IN CRYPTOLOGY — EUROCRYPT 2000
  • Book

    TITLE

    Public Key Cryptography – PKC 2004

    ISBN

    978-3-540-21018-4
    978-3-540-24632-9

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-540-24632-9_22

    DOI

    http://dx.doi.org/10.1007/978-3-540-24632-9_22

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1028117877


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Cincinnati", 
              "id": "https://www.grid.ac/institutes/grid.24827.3b", 
              "name": [
                "Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH\u00a045220, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ding", 
            "givenName": "Jintai", 
            "id": "sg:person.010723403013.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010723403013.04"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/3-540-45539-6_27", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000285811", 
              "https://doi.org/10.1007/3-540-45539-6_27"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-45353-9_20", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003163768", 
              "https://doi.org/10.1007/3-540-45353-9_20"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-45353-9_22", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006045667", 
              "https://doi.org/10.1007/3-540-45353-9_22"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-45353-9_21", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016354034", 
              "https://doi.org/10.1007/3-540-45353-9_21"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-36563-x_10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017318555", 
              "https://doi.org/10.1007/3-540-36563-x_10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-36563-x_10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017318555", 
              "https://doi.org/10.1007/3-540-36563-x_10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-36288-6_25", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021153329", 
              "https://doi.org/10.1007/3-540-36288-6_25"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0747-7171(08)80090-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034032488"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-45961-8_39", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035601256", 
              "https://doi.org/10.1007/3-540-45961-8_39"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-49649-1_4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038271412", 
              "https://doi.org/10.1007/3-540-49649-1_4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-49649-1_4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038271412", 
              "https://doi.org/10.1007/3-540-49649-1_4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1008341625464", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044711662", 
              "https://doi.org/10.1023/a:1008341625464"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-48405-1_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045972569", 
              "https://doi.org/10.1007/3-540-48405-1_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-48329-2_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047842422", 
              "https://doi.org/10.1007/3-540-48329-2_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-48329-2_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047842422", 
              "https://doi.org/10.1007/3-540-48329-2_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-45146-4_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049476263", 
              "https://doi.org/10.1007/978-3-540-45146-4_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-45146-4_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049476263", 
              "https://doi.org/10.1007/978-3-540-45146-4_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-36288-6_20", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050959246", 
              "https://doi.org/10.1007/3-540-36288-6_20"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-68339-9_4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051894160", 
              "https://doi.org/10.1007/3-540-68339-9_4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-68339-9_4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051894160", 
              "https://doi.org/10.1007/3-540-68339-9_4"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2004", 
        "datePublishedReg": "2004-01-01", 
        "description": "Though the multivariable cryptosystems first suggested by Matsumoto and Imai was defeated by the linearization method of Patarin due to the special properties of the Matsumoto-Imai (MI) cryptosystem, many variants and extensions of the MI system were suggested mainly by Patarin and his collaborators. In this paper, we propose a new variant of the MI system, which was inspired by the idea of \u201cperturbation\u201d. This method uses a set of r (a small number) linearly independent linear functions \\(z_i=\\sum_{j=1}^n \\alpha_{ij} x_j+\\beta_i,\\) i=1,..,r, over the variables x i , which are variables of the MI system. The perturbation is performed by adding random quadratic function of z i to the MI systems. The difference between our idea and a very similar idea of the Hidden Field Equation and Oil-Vinegar system is that our perturbation is internal, where we do not introduce any new variables, while the Hidden Field Equation and Oil-Vinegar system is an \u201cexternal\u201d perturbation of the HFE system, where a few extra (external) new variables are introduced to perform the perturbation. A practical implementation example of 136 bits, its security analysis and efficiency analysis are presented. The attack complexity of this perturbed Matsumoto-Imai cryptosystem is estimated.", 
        "editor": [
          {
            "familyName": "Bao", 
            "givenName": "Feng", 
            "type": "Person"
          }, 
          {
            "familyName": "Deng", 
            "givenName": "Robert", 
            "type": "Person"
          }, 
          {
            "familyName": "Zhou", 
            "givenName": "Jianying", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-540-24632-9_22", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": {
          "isbn": [
            "978-3-540-21018-4", 
            "978-3-540-24632-9"
          ], 
          "name": "Public Key Cryptography \u2013 PKC 2004", 
          "type": "Book"
        }, 
        "name": "A New Variant of the Matsumoto-Imai Cryptosystem through Perturbation", 
        "pagination": "305-318", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-540-24632-9_22"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "85f24dfa42df5afa408313fa6d3836f9673e9ff5ef77b6a5f84c092d1729cccd"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1028117877"
            ]
          }
        ], 
        "publisher": {
          "location": "Berlin, Heidelberg", 
          "name": "Springer Berlin Heidelberg", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-540-24632-9_22", 
          "https://app.dimensions.ai/details/publication/pub.1028117877"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T11:35", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000260.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-3-540-24632-9_22"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-24632-9_22'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-24632-9_22'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-24632-9_22'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-24632-9_22'


     

    This table displays all metadata directly associated to this object as RDF triples.

    134 TRIPLES      23 PREDICATES      42 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-540-24632-9_22 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Nda3a225e133346deae5b8953f717e070
    4 schema:citation sg:pub.10.1007/3-540-36288-6_20
    5 sg:pub.10.1007/3-540-36288-6_25
    6 sg:pub.10.1007/3-540-36563-x_10
    7 sg:pub.10.1007/3-540-45353-9_20
    8 sg:pub.10.1007/3-540-45353-9_21
    9 sg:pub.10.1007/3-540-45353-9_22
    10 sg:pub.10.1007/3-540-45539-6_27
    11 sg:pub.10.1007/3-540-45961-8_39
    12 sg:pub.10.1007/3-540-48329-2_1
    13 sg:pub.10.1007/3-540-48405-1_2
    14 sg:pub.10.1007/3-540-49649-1_4
    15 sg:pub.10.1007/3-540-68339-9_4
    16 sg:pub.10.1007/978-3-540-45146-4_3
    17 sg:pub.10.1023/a:1008341625464
    18 https://doi.org/10.1016/s0747-7171(08)80090-9
    19 schema:datePublished 2004
    20 schema:datePublishedReg 2004-01-01
    21 schema:description Though the multivariable cryptosystems first suggested by Matsumoto and Imai was defeated by the linearization method of Patarin due to the special properties of the Matsumoto-Imai (MI) cryptosystem, many variants and extensions of the MI system were suggested mainly by Patarin and his collaborators. In this paper, we propose a new variant of the MI system, which was inspired by the idea of “perturbation”. This method uses a set of r (a small number) linearly independent linear functions \(z_i=\sum_{j=1}^n \alpha_{ij} x_j+\beta_i,\) i=1,..,r, over the variables x i , which are variables of the MI system. The perturbation is performed by adding random quadratic function of z i to the MI systems. The difference between our idea and a very similar idea of the Hidden Field Equation and Oil-Vinegar system is that our perturbation is internal, where we do not introduce any new variables, while the Hidden Field Equation and Oil-Vinegar system is an “external” perturbation of the HFE system, where a few extra (external) new variables are introduced to perform the perturbation. A practical implementation example of 136 bits, its security analysis and efficiency analysis are presented. The attack complexity of this perturbed Matsumoto-Imai cryptosystem is estimated.
    22 schema:editor N79bb650fd4bc4359a5a6157201c64b7b
    23 schema:genre chapter
    24 schema:inLanguage en
    25 schema:isAccessibleForFree true
    26 schema:isPartOf Nd80be307119045c89a94c7024e125bec
    27 schema:name A New Variant of the Matsumoto-Imai Cryptosystem through Perturbation
    28 schema:pagination 305-318
    29 schema:productId N29e3cade8ca4498aafdc4856f0e6eaed
    30 Nbc528168866e496da09410af4d3f4b5c
    31 Nceb7cf8b843148a0907008e7bf72075f
    32 schema:publisher Nc3c353d589a44af7b9081f3037257cab
    33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028117877
    34 https://doi.org/10.1007/978-3-540-24632-9_22
    35 schema:sdDatePublished 2019-04-15T11:35
    36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    37 schema:sdPublisher N4c5c4e0c928e4f7aa7e42b25feb3bc98
    38 schema:url http://link.springer.com/10.1007/978-3-540-24632-9_22
    39 sgo:license sg:explorer/license/
    40 sgo:sdDataset chapters
    41 rdf:type schema:Chapter
    42 N29e3cade8ca4498aafdc4856f0e6eaed schema:name readcube_id
    43 schema:value 85f24dfa42df5afa408313fa6d3836f9673e9ff5ef77b6a5f84c092d1729cccd
    44 rdf:type schema:PropertyValue
    45 N2cc5e5dcfc0e4932a25734a02dc6421e rdf:first N649f03c3e2334478aa6673068c1a8bb9
    46 rdf:rest rdf:nil
    47 N468df20eb273446f8b81b08b3e832df4 schema:familyName Bao
    48 schema:givenName Feng
    49 rdf:type schema:Person
    50 N4c5c4e0c928e4f7aa7e42b25feb3bc98 schema:name Springer Nature - SN SciGraph project
    51 rdf:type schema:Organization
    52 N649f03c3e2334478aa6673068c1a8bb9 schema:familyName Zhou
    53 schema:givenName Jianying
    54 rdf:type schema:Person
    55 N79bb650fd4bc4359a5a6157201c64b7b rdf:first N468df20eb273446f8b81b08b3e832df4
    56 rdf:rest Nec77362edd5543759f2f8f41f4cf70c1
    57 Nbc528168866e496da09410af4d3f4b5c schema:name dimensions_id
    58 schema:value pub.1028117877
    59 rdf:type schema:PropertyValue
    60 Nc3c353d589a44af7b9081f3037257cab schema:location Berlin, Heidelberg
    61 schema:name Springer Berlin Heidelberg
    62 rdf:type schema:Organisation
    63 Nceb7cf8b843148a0907008e7bf72075f schema:name doi
    64 schema:value 10.1007/978-3-540-24632-9_22
    65 rdf:type schema:PropertyValue
    66 Nd80be307119045c89a94c7024e125bec schema:isbn 978-3-540-21018-4
    67 978-3-540-24632-9
    68 schema:name Public Key Cryptography – PKC 2004
    69 rdf:type schema:Book
    70 Nda3a225e133346deae5b8953f717e070 rdf:first sg:person.010723403013.04
    71 rdf:rest rdf:nil
    72 Nec77362edd5543759f2f8f41f4cf70c1 rdf:first Nf76d5b29d36d424aa9ed3eca108fd566
    73 rdf:rest N2cc5e5dcfc0e4932a25734a02dc6421e
    74 Nf76d5b29d36d424aa9ed3eca108fd566 schema:familyName Deng
    75 schema:givenName Robert
    76 rdf:type schema:Person
    77 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    78 schema:name Mathematical Sciences
    79 rdf:type schema:DefinedTerm
    80 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    81 schema:name Pure Mathematics
    82 rdf:type schema:DefinedTerm
    83 sg:person.010723403013.04 schema:affiliation https://www.grid.ac/institutes/grid.24827.3b
    84 schema:familyName Ding
    85 schema:givenName Jintai
    86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010723403013.04
    87 rdf:type schema:Person
    88 sg:pub.10.1007/3-540-36288-6_20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050959246
    89 https://doi.org/10.1007/3-540-36288-6_20
    90 rdf:type schema:CreativeWork
    91 sg:pub.10.1007/3-540-36288-6_25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021153329
    92 https://doi.org/10.1007/3-540-36288-6_25
    93 rdf:type schema:CreativeWork
    94 sg:pub.10.1007/3-540-36563-x_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017318555
    95 https://doi.org/10.1007/3-540-36563-x_10
    96 rdf:type schema:CreativeWork
    97 sg:pub.10.1007/3-540-45353-9_20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003163768
    98 https://doi.org/10.1007/3-540-45353-9_20
    99 rdf:type schema:CreativeWork
    100 sg:pub.10.1007/3-540-45353-9_21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016354034
    101 https://doi.org/10.1007/3-540-45353-9_21
    102 rdf:type schema:CreativeWork
    103 sg:pub.10.1007/3-540-45353-9_22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006045667
    104 https://doi.org/10.1007/3-540-45353-9_22
    105 rdf:type schema:CreativeWork
    106 sg:pub.10.1007/3-540-45539-6_27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000285811
    107 https://doi.org/10.1007/3-540-45539-6_27
    108 rdf:type schema:CreativeWork
    109 sg:pub.10.1007/3-540-45961-8_39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035601256
    110 https://doi.org/10.1007/3-540-45961-8_39
    111 rdf:type schema:CreativeWork
    112 sg:pub.10.1007/3-540-48329-2_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047842422
    113 https://doi.org/10.1007/3-540-48329-2_1
    114 rdf:type schema:CreativeWork
    115 sg:pub.10.1007/3-540-48405-1_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045972569
    116 https://doi.org/10.1007/3-540-48405-1_2
    117 rdf:type schema:CreativeWork
    118 sg:pub.10.1007/3-540-49649-1_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038271412
    119 https://doi.org/10.1007/3-540-49649-1_4
    120 rdf:type schema:CreativeWork
    121 sg:pub.10.1007/3-540-68339-9_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051894160
    122 https://doi.org/10.1007/3-540-68339-9_4
    123 rdf:type schema:CreativeWork
    124 sg:pub.10.1007/978-3-540-45146-4_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049476263
    125 https://doi.org/10.1007/978-3-540-45146-4_3
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1023/a:1008341625464 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044711662
    128 https://doi.org/10.1023/a:1008341625464
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1016/s0747-7171(08)80090-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034032488
    131 rdf:type schema:CreativeWork
    132 https://www.grid.ac/institutes/grid.24827.3b schema:alternateName University of Cincinnati
    133 schema:name Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH 45220, USA
    134 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...