A Weight Decomposition Approach to the Sign Problem in Wigner Transport Simulations View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2004

AUTHORS

Mihail Nedjalkov , Hans Kosina , Siegfried Selberherr

ABSTRACT

A stochastic method for simulation of carrier transport in semiconductor nanostructures is presented. The Wigner formulation of quantum mechanics is used. The method which aims at evaluation of mean values of physical quantities, is obtained by following the rules of the Monte Carlo theory. A particular numerical feature of the method are statistical weights with inverse signs which can achieve large absolute values. They give rise to high variance of the simulation results, the so called sign problem in quantum Monte Carlo simulations. A weight decomposition approach is proposed which limits the value of a weight by storing part of it on a phase space grid. Annihilation of positive and negative stored weights, which occurs during the simulation significantly improves the variance of the method. More... »

PAGES

178-184

Book

TITLE

Large-Scale Scientific Computing

ISBN

978-3-540-21090-0
978-3-540-24588-9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-24588-9_19

DOI

http://dx.doi.org/10.1007/978-3-540-24588-9_19

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1011790613


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0105", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute for Microelectronics, TU-Vienna, Gusshausstrasse 27-29/E360, A-1040, Wien, Austria", 
          "id": "http://www.grid.ac/institutes/grid.5329.d", 
          "name": [
            "Institute for Microelectronics, TU-Vienna, Gusshausstrasse 27-29/E360, A-1040, Wien, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nedjalkov", 
        "givenName": "Mihail", 
        "id": "sg:person.011142023427.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011142023427.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Microelectronics, TU-Vienna, Gusshausstrasse 27-29/E360, A-1040, Wien, Austria", 
          "id": "http://www.grid.ac/institutes/grid.5329.d", 
          "name": [
            "Institute for Microelectronics, TU-Vienna, Gusshausstrasse 27-29/E360, A-1040, Wien, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kosina", 
        "givenName": "Hans", 
        "id": "sg:person.016550513317.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016550513317.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Microelectronics, TU-Vienna, Gusshausstrasse 27-29/E360, A-1040, Wien, Austria", 
          "id": "http://www.grid.ac/institutes/grid.5329.d", 
          "name": [
            "Institute for Microelectronics, TU-Vienna, Gusshausstrasse 27-29/E360, A-1040, Wien, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Selberherr", 
        "givenName": "Siegfried", 
        "id": "sg:person.013033344117.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013033344117.92"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2004", 
    "datePublishedReg": "2004-01-01", 
    "description": "A stochastic method for simulation of carrier transport in semiconductor nanostructures is presented. The Wigner formulation of quantum mechanics is used. The method which aims at evaluation of mean values of physical quantities, is obtained by following the rules of the Monte Carlo theory. A particular numerical feature of the method are statistical weights with inverse signs which can achieve large absolute values. They give rise to high variance of the simulation results, the so called sign problem in quantum Monte Carlo simulations. A weight decomposition approach is proposed which limits the value of a weight by storing part of it on a phase space grid. Annihilation of positive and negative stored weights, which occurs during the simulation significantly improves the variance of the method.", 
    "editor": [
      {
        "familyName": "Lirkov", 
        "givenName": "Ivan", 
        "type": "Person"
      }, 
      {
        "familyName": "Margenov", 
        "givenName": "Svetozar", 
        "type": "Person"
      }, 
      {
        "familyName": "Wa\u015bniewski", 
        "givenName": "Jerzy", 
        "type": "Person"
      }, 
      {
        "familyName": "Yalamov", 
        "givenName": "Plamen", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-24588-9_19", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-21090-0", 
        "978-3-540-24588-9"
      ], 
      "name": "Large-Scale Scientific Computing", 
      "type": "Book"
    }, 
    "keywords": [
      "sign problem", 
      "quantum Monte Carlo simulations", 
      "phase-space grid", 
      "decomposition approach", 
      "Monte Carlo theory", 
      "Wigner formulation", 
      "semiconductor nanostructures", 
      "quantum mechanics", 
      "Monte Carlo simulations", 
      "stochastic method", 
      "statistical weights", 
      "carrier transport", 
      "space grid", 
      "physical quantities", 
      "transport simulations", 
      "inverse sign", 
      "Carlo simulations", 
      "largest absolute value", 
      "numerical features", 
      "simulation results", 
      "simulations", 
      "absolute value", 
      "annihilation", 
      "problem", 
      "nanostructures", 
      "mechanics", 
      "theory", 
      "grid", 
      "formulation", 
      "high variance", 
      "approach", 
      "variance", 
      "mean value", 
      "transport", 
      "values", 
      "quantity", 
      "method", 
      "rules", 
      "results", 
      "rise", 
      "features", 
      "part", 
      "weight", 
      "signs", 
      "evaluation"
    ], 
    "name": "A Weight Decomposition Approach to the Sign Problem in Wigner Transport Simulations", 
    "pagination": "178-184", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1011790613"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-24588-9_19"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-24588-9_19", 
      "https://app.dimensions.ai/details/publication/pub.1011790613"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-10T10:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/chapter/chapter_46.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-540-24588-9_19"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-24588-9_19'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-24588-9_19'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-24588-9_19'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-24588-9_19'


 

This table displays all metadata directly associated to this object as RDF triples.

134 TRIPLES      23 PREDICATES      71 URIs      64 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-24588-9_19 schema:about anzsrc-for:01
2 anzsrc-for:0105
3 schema:author Nb6576422ad504bf18a466dc36d1e4a2e
4 schema:datePublished 2004
5 schema:datePublishedReg 2004-01-01
6 schema:description A stochastic method for simulation of carrier transport in semiconductor nanostructures is presented. The Wigner formulation of quantum mechanics is used. The method which aims at evaluation of mean values of physical quantities, is obtained by following the rules of the Monte Carlo theory. A particular numerical feature of the method are statistical weights with inverse signs which can achieve large absolute values. They give rise to high variance of the simulation results, the so called sign problem in quantum Monte Carlo simulations. A weight decomposition approach is proposed which limits the value of a weight by storing part of it on a phase space grid. Annihilation of positive and negative stored weights, which occurs during the simulation significantly improves the variance of the method.
7 schema:editor N4b196266ee75422a8776c60fc162908d
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N9845efdfc6644b8c979a896613783ada
12 schema:keywords Carlo simulations
13 Monte Carlo simulations
14 Monte Carlo theory
15 Wigner formulation
16 absolute value
17 annihilation
18 approach
19 carrier transport
20 decomposition approach
21 evaluation
22 features
23 formulation
24 grid
25 high variance
26 inverse sign
27 largest absolute value
28 mean value
29 mechanics
30 method
31 nanostructures
32 numerical features
33 part
34 phase-space grid
35 physical quantities
36 problem
37 quantity
38 quantum Monte Carlo simulations
39 quantum mechanics
40 results
41 rise
42 rules
43 semiconductor nanostructures
44 sign problem
45 signs
46 simulation results
47 simulations
48 space grid
49 statistical weights
50 stochastic method
51 theory
52 transport
53 transport simulations
54 values
55 variance
56 weight
57 schema:name A Weight Decomposition Approach to the Sign Problem in Wigner Transport Simulations
58 schema:pagination 178-184
59 schema:productId N0bbfe8f93ef64d5c8c5429c57b96b5fa
60 Nb3b6f61223cc4f83b6c6a55a7091928b
61 schema:publisher Na46182999c26441da58c36233ddbe7fa
62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011790613
63 https://doi.org/10.1007/978-3-540-24588-9_19
64 schema:sdDatePublished 2022-05-10T10:54
65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
66 schema:sdPublisher N22b5aaec706a4e1a947bdffcc18f355b
67 schema:url https://doi.org/10.1007/978-3-540-24588-9_19
68 sgo:license sg:explorer/license/
69 sgo:sdDataset chapters
70 rdf:type schema:Chapter
71 N0bbfe8f93ef64d5c8c5429c57b96b5fa schema:name doi
72 schema:value 10.1007/978-3-540-24588-9_19
73 rdf:type schema:PropertyValue
74 N19b3b055a97a4dcbb145eb1cdd7ce057 rdf:first N4ef1799afc724e87aca9a868d43f6b84
75 rdf:rest rdf:nil
76 N211d24b7cd144368bd229ff7d59ce092 rdf:first sg:person.013033344117.92
77 rdf:rest rdf:nil
78 N22b5aaec706a4e1a947bdffcc18f355b schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 N24a77127ec964f1d840b77b48f20bb2e rdf:first Na796f5c5e29845aabf6c226fa3903ea7
81 rdf:rest N19b3b055a97a4dcbb145eb1cdd7ce057
82 N3ebb5dcffb334bcf8e43feeb33952a63 rdf:first sg:person.016550513317.72
83 rdf:rest N211d24b7cd144368bd229ff7d59ce092
84 N4b196266ee75422a8776c60fc162908d rdf:first Nfaf8259c32df4f32bd00e88aa89d01af
85 rdf:rest Naeded360bfe2410b95fb7f415441e6df
86 N4ef1799afc724e87aca9a868d43f6b84 schema:familyName Yalamov
87 schema:givenName Plamen
88 rdf:type schema:Person
89 N80295100a58445c8a6b160dd080f3932 schema:familyName Margenov
90 schema:givenName Svetozar
91 rdf:type schema:Person
92 N9845efdfc6644b8c979a896613783ada schema:isbn 978-3-540-21090-0
93 978-3-540-24588-9
94 schema:name Large-Scale Scientific Computing
95 rdf:type schema:Book
96 Na46182999c26441da58c36233ddbe7fa schema:name Springer Nature
97 rdf:type schema:Organisation
98 Na796f5c5e29845aabf6c226fa3903ea7 schema:familyName Waśniewski
99 schema:givenName Jerzy
100 rdf:type schema:Person
101 Naeded360bfe2410b95fb7f415441e6df rdf:first N80295100a58445c8a6b160dd080f3932
102 rdf:rest N24a77127ec964f1d840b77b48f20bb2e
103 Nb3b6f61223cc4f83b6c6a55a7091928b schema:name dimensions_id
104 schema:value pub.1011790613
105 rdf:type schema:PropertyValue
106 Nb6576422ad504bf18a466dc36d1e4a2e rdf:first sg:person.011142023427.48
107 rdf:rest N3ebb5dcffb334bcf8e43feeb33952a63
108 Nfaf8259c32df4f32bd00e88aa89d01af schema:familyName Lirkov
109 schema:givenName Ivan
110 rdf:type schema:Person
111 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
112 schema:name Mathematical Sciences
113 rdf:type schema:DefinedTerm
114 anzsrc-for:0105 schema:inDefinedTermSet anzsrc-for:
115 schema:name Mathematical Physics
116 rdf:type schema:DefinedTerm
117 sg:person.011142023427.48 schema:affiliation grid-institutes:grid.5329.d
118 schema:familyName Nedjalkov
119 schema:givenName Mihail
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011142023427.48
121 rdf:type schema:Person
122 sg:person.013033344117.92 schema:affiliation grid-institutes:grid.5329.d
123 schema:familyName Selberherr
124 schema:givenName Siegfried
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013033344117.92
126 rdf:type schema:Person
127 sg:person.016550513317.72 schema:affiliation grid-institutes:grid.5329.d
128 schema:familyName Kosina
129 schema:givenName Hans
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016550513317.72
131 rdf:type schema:Person
132 grid-institutes:grid.5329.d schema:alternateName Institute for Microelectronics, TU-Vienna, Gusshausstrasse 27-29/E360, A-1040, Wien, Austria
133 schema:name Institute for Microelectronics, TU-Vienna, Gusshausstrasse 27-29/E360, A-1040, Wien, Austria
134 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...