Adaptation to Drifting Concepts View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2003

AUTHORS

Gladys Castillo , João Gama , Pedro Medas

ABSTRACT

Most of supervised learning algorithms assume the stability of the target concept over time. Nevertheless in many real-user modeling systems, where the data is collected over an extended period of time, the learning task can be complicated by changes in the distribution underlying the data. This problem is known in machine learning as concept drift. The main idea behind Statistical Quality Control is to monitor the stability of one or more quality characteristics in a production process which generally shows some variation over time. In this paper we present a method for handling concept drift based on Shewhart P-Charts in an on-line framework for supervised learning. We explore the use of two alternatives P-charts, which differ only by the way they estimate the target value to set the center line. Experiments with simulated concept drift scenarios in the context of a user modeling prediction task compare the proposed method with other adaptive approaches. The results show that, both P-Charts consistently recognize concept changes, and that the learner can adapt quickly to these changes to maintain its performance level. More... »

PAGES

279-293

Book

TITLE

Progress in Artificial Intelligence

ISBN

978-3-540-20589-0
978-3-540-24580-3

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-24580-3_34

DOI

http://dx.doi.org/10.1007/978-3-540-24580-3_34

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1032822366


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Aveiro", 
          "id": "https://www.grid.ac/institutes/grid.7311.4", 
          "name": [
            "LIACC, University of Porto, Portugal", 
            "Department of Mathematics, University of Aveiro, Portugal"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Castillo", 
        "givenName": "Gladys", 
        "id": "sg:person.015237077151.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015237077151.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Porto", 
          "id": "https://www.grid.ac/institutes/grid.5808.5", 
          "name": [
            "LIACC, University of Porto, Portugal", 
            "FEP, University of Porto, Portugal"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gama", 
        "givenName": "Jo\u00e3o", 
        "id": "sg:person.011001067722.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011001067722.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Porto", 
          "id": "https://www.grid.ac/institutes/grid.5808.5", 
          "name": [
            "LIACC, University of Porto, Portugal"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Medas", 
        "givenName": "Pedro", 
        "id": "sg:person.015627462141.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015627462141.57"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/3-540-44963-9_44", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003472550", 
          "https://doi.org/10.1007/3-540-44963-9_44"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1007661119649", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018650476", 
          "https://doi.org/10.1023/a:1007661119649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00116900", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025237168", 
          "https://doi.org/10.1007/bf00116900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00116900", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025237168", 
          "https://doi.org/10.1007/bf00116900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-36131-6_78", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034972148", 
          "https://doi.org/10.1007/3-540-36131-6_78"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-36131-6_78", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034972148", 
          "https://doi.org/10.1007/3-540-36131-6_78"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1011117102175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039785209", 
          "https://doi.org/10.1023/a:1011117102175"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2003", 
    "datePublishedReg": "2003-01-01", 
    "description": "Most of supervised learning algorithms assume the stability of the target concept over time. Nevertheless in many real-user modeling systems, where the data is collected over an extended period of time, the learning task can be complicated by changes in the distribution underlying the data. This problem is known in machine learning as concept drift. The main idea behind Statistical Quality Control is to monitor the stability of one or more quality characteristics in a production process which generally shows some variation over time. In this paper we present a method for handling concept drift based on Shewhart P-Charts in an on-line framework for supervised learning. We explore the use of two alternatives P-charts, which differ only by the way they estimate the target value to set the center line. Experiments with simulated concept drift scenarios in the context of a user modeling prediction task compare the proposed method with other adaptive approaches. The results show that, both P-Charts consistently recognize concept changes, and that the learner can adapt quickly to these changes to maintain its performance level.", 
    "editor": [
      {
        "familyName": "Pires", 
        "givenName": "Fernando Moura", 
        "type": "Person"
      }, 
      {
        "familyName": "Abreu", 
        "givenName": "Salvador", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-24580-3_34", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-20589-0", 
        "978-3-540-24580-3"
      ], 
      "name": "Progress in Artificial Intelligence", 
      "type": "Book"
    }, 
    "name": "Adaptation to Drifting Concepts", 
    "pagination": "279-293", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1032822366"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-24580-3_34"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9c5c3bc7d67c842679bc15896c888adbb731cd6643fd585b03f20b3f17f33843"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-24580-3_34", 
      "https://app.dimensions.ai/details/publication/pub.1032822366"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T08:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87117_00000001.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-540-24580-3_34"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-24580-3_34'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-24580-3_34'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-24580-3_34'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-24580-3_34'


 

This table displays all metadata directly associated to this object as RDF triples.

109 TRIPLES      23 PREDICATES      32 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-24580-3_34 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N6dc03c8a2fbf4907aa29fa3fc9558649
4 schema:citation sg:pub.10.1007/3-540-36131-6_78
5 sg:pub.10.1007/3-540-44963-9_44
6 sg:pub.10.1007/bf00116900
7 sg:pub.10.1023/a:1007661119649
8 sg:pub.10.1023/a:1011117102175
9 schema:datePublished 2003
10 schema:datePublishedReg 2003-01-01
11 schema:description Most of supervised learning algorithms assume the stability of the target concept over time. Nevertheless in many real-user modeling systems, where the data is collected over an extended period of time, the learning task can be complicated by changes in the distribution underlying the data. This problem is known in machine learning as concept drift. The main idea behind Statistical Quality Control is to monitor the stability of one or more quality characteristics in a production process which generally shows some variation over time. In this paper we present a method for handling concept drift based on Shewhart P-Charts in an on-line framework for supervised learning. We explore the use of two alternatives P-charts, which differ only by the way they estimate the target value to set the center line. Experiments with simulated concept drift scenarios in the context of a user modeling prediction task compare the proposed method with other adaptive approaches. The results show that, both P-Charts consistently recognize concept changes, and that the learner can adapt quickly to these changes to maintain its performance level.
12 schema:editor N574f089fbed041c29791895966d5660c
13 schema:genre chapter
14 schema:inLanguage en
15 schema:isAccessibleForFree true
16 schema:isPartOf N54dc1373514c4e5e9e129e44a30f3d83
17 schema:name Adaptation to Drifting Concepts
18 schema:pagination 279-293
19 schema:productId N161bc41e29f94df4b7643103a80deea9
20 N5a17dce36b09491f81afcef7531e282f
21 N62af9bee863d4c559892042ef36110b8
22 schema:publisher N3b004b5a3a5c4fedbb0fe3e00f54a12c
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032822366
24 https://doi.org/10.1007/978-3-540-24580-3_34
25 schema:sdDatePublished 2019-04-16T08:20
26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
27 schema:sdPublisher Nb56aab7be0a243e7a28ba119298ad6e8
28 schema:url https://link.springer.com/10.1007%2F978-3-540-24580-3_34
29 sgo:license sg:explorer/license/
30 sgo:sdDataset chapters
31 rdf:type schema:Chapter
32 N022dfffd17ed4e52abac77fa5a8706fb rdf:first Na3ae86e652a54b05886b46e15b9f27ba
33 rdf:rest rdf:nil
34 N0ddaa74ab96542c3a8fed81e95782b04 schema:familyName Pires
35 schema:givenName Fernando Moura
36 rdf:type schema:Person
37 N161bc41e29f94df4b7643103a80deea9 schema:name readcube_id
38 schema:value 9c5c3bc7d67c842679bc15896c888adbb731cd6643fd585b03f20b3f17f33843
39 rdf:type schema:PropertyValue
40 N3b004b5a3a5c4fedbb0fe3e00f54a12c schema:location Berlin, Heidelberg
41 schema:name Springer Berlin Heidelberg
42 rdf:type schema:Organisation
43 N54dc1373514c4e5e9e129e44a30f3d83 schema:isbn 978-3-540-20589-0
44 978-3-540-24580-3
45 schema:name Progress in Artificial Intelligence
46 rdf:type schema:Book
47 N574f089fbed041c29791895966d5660c rdf:first N0ddaa74ab96542c3a8fed81e95782b04
48 rdf:rest N022dfffd17ed4e52abac77fa5a8706fb
49 N5a17dce36b09491f81afcef7531e282f schema:name dimensions_id
50 schema:value pub.1032822366
51 rdf:type schema:PropertyValue
52 N62af9bee863d4c559892042ef36110b8 schema:name doi
53 schema:value 10.1007/978-3-540-24580-3_34
54 rdf:type schema:PropertyValue
55 N6dc03c8a2fbf4907aa29fa3fc9558649 rdf:first sg:person.015237077151.36
56 rdf:rest N72c326b999174274b5d17d3dae0153a0
57 N72c326b999174274b5d17d3dae0153a0 rdf:first sg:person.011001067722.17
58 rdf:rest N914f292ee2224e109bf876d44f5b2efb
59 N914f292ee2224e109bf876d44f5b2efb rdf:first sg:person.015627462141.57
60 rdf:rest rdf:nil
61 Na3ae86e652a54b05886b46e15b9f27ba schema:familyName Abreu
62 schema:givenName Salvador
63 rdf:type schema:Person
64 Nb56aab7be0a243e7a28ba119298ad6e8 schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
67 schema:name Information and Computing Sciences
68 rdf:type schema:DefinedTerm
69 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
70 schema:name Artificial Intelligence and Image Processing
71 rdf:type schema:DefinedTerm
72 sg:person.011001067722.17 schema:affiliation https://www.grid.ac/institutes/grid.5808.5
73 schema:familyName Gama
74 schema:givenName João
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011001067722.17
76 rdf:type schema:Person
77 sg:person.015237077151.36 schema:affiliation https://www.grid.ac/institutes/grid.7311.4
78 schema:familyName Castillo
79 schema:givenName Gladys
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015237077151.36
81 rdf:type schema:Person
82 sg:person.015627462141.57 schema:affiliation https://www.grid.ac/institutes/grid.5808.5
83 schema:familyName Medas
84 schema:givenName Pedro
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015627462141.57
86 rdf:type schema:Person
87 sg:pub.10.1007/3-540-36131-6_78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034972148
88 https://doi.org/10.1007/3-540-36131-6_78
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/3-540-44963-9_44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003472550
91 https://doi.org/10.1007/3-540-44963-9_44
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/bf00116900 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025237168
94 https://doi.org/10.1007/bf00116900
95 rdf:type schema:CreativeWork
96 sg:pub.10.1023/a:1007661119649 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018650476
97 https://doi.org/10.1023/a:1007661119649
98 rdf:type schema:CreativeWork
99 sg:pub.10.1023/a:1011117102175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039785209
100 https://doi.org/10.1023/a:1011117102175
101 rdf:type schema:CreativeWork
102 https://www.grid.ac/institutes/grid.5808.5 schema:alternateName University of Porto
103 schema:name FEP, University of Porto, Portugal
104 LIACC, University of Porto, Portugal
105 rdf:type schema:Organization
106 https://www.grid.ac/institutes/grid.7311.4 schema:alternateName University of Aveiro
107 schema:name Department of Mathematics, University of Aveiro, Portugal
108 LIACC, University of Porto, Portugal
109 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...