Numerical Solution of Asymptotic Two-Point Boundary Value Problems with Application to the Swirling Flow over a Plane Disk View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1989

AUTHORS

Hans Josef Pesch , Peter Rentrop

ABSTRACT

A technique is presented for the numerical solution of asymptotic two-point boundary value problems. Thereby the boundary layer part of the solution, defined over a finite interval, is splitted from the asymptotic part of the solution. By a linearization technique one obtains surrogate boundary conditions so that the infinite problem can be efficiently approximated by a finite problem. This allows the convenient application of standard software for the solution of two-point boundary value problems. As a main example, the swirling flow of a viscous incompressible fluid over an infinite plane disk is investigated. Limitations of the procedure are discussed. More... »

PAGES

327-338

Book

TITLE

Proceedings of the Third German-Italian Symposium Applications of Mathematics in Industry and Technology

ISBN

978-3-519-02628-0
978-3-322-96692-6

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-322-96692-6_24

DOI

http://dx.doi.org/10.1007/978-3-322-96692-6_24

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008820811


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Mathematisches Institut, Technische Universit\u00e4t M\u00fcnchen, Arcisstra\u00dfe 21, Postfach 20 24 20, D 8000, M\u00fcnchen 2, Germany", 
          "id": "http://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Mathematisches Institut, Technische Universit\u00e4t M\u00fcnchen, Arcisstra\u00dfe 21, Postfach 20 24 20, D 8000, M\u00fcnchen 2, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pesch", 
        "givenName": "Hans Josef", 
        "id": "sg:person.014543723551.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014543723551.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mathematisches Institut, Technische Universit\u00e4t M\u00fcnchen, Arcisstra\u00dfe 21, Postfach 20 24 20, D 8000, M\u00fcnchen 2, Germany", 
          "id": "http://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Mathematisches Institut, Technische Universit\u00e4t M\u00fcnchen, Arcisstra\u00dfe 21, Postfach 20 24 20, D 8000, M\u00fcnchen 2, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rentrop", 
        "givenName": "Peter", 
        "id": "sg:person.014032223761.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014032223761.67"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1989", 
    "datePublishedReg": "1989-01-01", 
    "description": "A technique is presented for the numerical solution of asymptotic two-point boundary value problems. Thereby the boundary layer part of the solution, defined over a finite interval, is splitted from the asymptotic part of the solution. By a linearization technique one obtains surrogate boundary conditions so that the infinite problem can be efficiently approximated by a finite problem. This allows the convenient application of standard software for the solution of two-point boundary value problems. As a main example, the swirling flow of a viscous incompressible fluid over an infinite plane disk is investigated. Limitations of the procedure are discussed.", 
    "editor": [
      {
        "familyName": "Boffi", 
        "givenName": "Vinicio", 
        "type": "Person"
      }, 
      {
        "familyName": "Neunzert", 
        "givenName": "Helmut", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-322-96692-6_24", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-519-02628-0", 
        "978-3-322-96692-6"
      ], 
      "name": "Proceedings of the Third German-Italian Symposium Applications of Mathematics in Industry and Technology", 
      "type": "Book"
    }, 
    "keywords": [
      "plane disk", 
      "numerical solution", 
      "viscous incompressible fluid", 
      "boundary layer part", 
      "swirling flow", 
      "two-point boundary value problem", 
      "boundary value problem", 
      "layer part", 
      "incompressible fluid", 
      "boundary conditions", 
      "value problem", 
      "convenient application", 
      "flow", 
      "solution", 
      "asymptotic part", 
      "applications", 
      "infinite problem", 
      "disk", 
      "problem", 
      "fluid", 
      "standard software", 
      "technique", 
      "conditions", 
      "software", 
      "finite interval", 
      "part", 
      "obtains", 
      "limitations", 
      "example", 
      "one obtains", 
      "procedure", 
      "finite problem", 
      "main example", 
      "interval", 
      "asymptotics"
    ], 
    "name": "Numerical Solution of Asymptotic Two-Point Boundary Value Problems with Application to the Swirling Flow over a Plane Disk", 
    "pagination": "327-338", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008820811"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-322-96692-6_24"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-322-96692-6_24", 
      "https://app.dimensions.ai/details/publication/pub.1008820811"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-10-01T06:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/chapter/chapter_169.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-322-96692-6_24"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-322-96692-6_24'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-322-96692-6_24'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-322-96692-6_24'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-322-96692-6_24'


 

This table displays all metadata directly associated to this object as RDF triples.

106 TRIPLES      22 PREDICATES      60 URIs      53 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-322-96692-6_24 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N4fc785c633c242f684375cb982f3f78d
4 schema:datePublished 1989
5 schema:datePublishedReg 1989-01-01
6 schema:description A technique is presented for the numerical solution of asymptotic two-point boundary value problems. Thereby the boundary layer part of the solution, defined over a finite interval, is splitted from the asymptotic part of the solution. By a linearization technique one obtains surrogate boundary conditions so that the infinite problem can be efficiently approximated by a finite problem. This allows the convenient application of standard software for the solution of two-point boundary value problems. As a main example, the swirling flow of a viscous incompressible fluid over an infinite plane disk is investigated. Limitations of the procedure are discussed.
7 schema:editor N43563f82ae884ed0ac1a59e28456a072
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf N1b98c4c8cb074aa1bb36735da12bdaf6
11 schema:keywords applications
12 asymptotic part
13 asymptotics
14 boundary conditions
15 boundary layer part
16 boundary value problem
17 conditions
18 convenient application
19 disk
20 example
21 finite interval
22 finite problem
23 flow
24 fluid
25 incompressible fluid
26 infinite problem
27 interval
28 layer part
29 limitations
30 main example
31 numerical solution
32 obtains
33 one obtains
34 part
35 plane disk
36 problem
37 procedure
38 software
39 solution
40 standard software
41 swirling flow
42 technique
43 two-point boundary value problem
44 value problem
45 viscous incompressible fluid
46 schema:name Numerical Solution of Asymptotic Two-Point Boundary Value Problems with Application to the Swirling Flow over a Plane Disk
47 schema:pagination 327-338
48 schema:productId N5f04dccc9a6346d3a7cba107b2998ea6
49 Nc43c625367104348bec371c14063e3e2
50 schema:publisher N0a93141bc0764697a13c949bfdc982a3
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008820811
52 https://doi.org/10.1007/978-3-322-96692-6_24
53 schema:sdDatePublished 2022-10-01T06:53
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher Nd615f090f1854cf89427b43327fc976e
56 schema:url https://doi.org/10.1007/978-3-322-96692-6_24
57 sgo:license sg:explorer/license/
58 sgo:sdDataset chapters
59 rdf:type schema:Chapter
60 N0a93141bc0764697a13c949bfdc982a3 schema:name Springer Nature
61 rdf:type schema:Organisation
62 N1b61b7f3b05e4d77a9fb7ef139dbb3c3 schema:familyName Boffi
63 schema:givenName Vinicio
64 rdf:type schema:Person
65 N1b98c4c8cb074aa1bb36735da12bdaf6 schema:isbn 978-3-322-96692-6
66 978-3-519-02628-0
67 schema:name Proceedings of the Third German-Italian Symposium Applications of Mathematics in Industry and Technology
68 rdf:type schema:Book
69 N43563f82ae884ed0ac1a59e28456a072 rdf:first N1b61b7f3b05e4d77a9fb7ef139dbb3c3
70 rdf:rest N6230ee612b7a4942959f6cdbe5322f7e
71 N4fc785c633c242f684375cb982f3f78d rdf:first sg:person.014543723551.22
72 rdf:rest Nfa259739972f4462a4a345adf66b5586
73 N514a4bd536b241cf807c2f96109d5256 schema:familyName Neunzert
74 schema:givenName Helmut
75 rdf:type schema:Person
76 N5f04dccc9a6346d3a7cba107b2998ea6 schema:name dimensions_id
77 schema:value pub.1008820811
78 rdf:type schema:PropertyValue
79 N6230ee612b7a4942959f6cdbe5322f7e rdf:first N514a4bd536b241cf807c2f96109d5256
80 rdf:rest rdf:nil
81 Nc43c625367104348bec371c14063e3e2 schema:name doi
82 schema:value 10.1007/978-3-322-96692-6_24
83 rdf:type schema:PropertyValue
84 Nd615f090f1854cf89427b43327fc976e schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 Nfa259739972f4462a4a345adf66b5586 rdf:first sg:person.014032223761.67
87 rdf:rest rdf:nil
88 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
89 schema:name Engineering
90 rdf:type schema:DefinedTerm
91 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
92 schema:name Interdisciplinary Engineering
93 rdf:type schema:DefinedTerm
94 sg:person.014032223761.67 schema:affiliation grid-institutes:grid.6936.a
95 schema:familyName Rentrop
96 schema:givenName Peter
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014032223761.67
98 rdf:type schema:Person
99 sg:person.014543723551.22 schema:affiliation grid-institutes:grid.6936.a
100 schema:familyName Pesch
101 schema:givenName Hans Josef
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014543723551.22
103 rdf:type schema:Person
104 grid-institutes:grid.6936.a schema:alternateName Mathematisches Institut, Technische Universität München, Arcisstraße 21, Postfach 20 24 20, D 8000, München 2, Germany
105 schema:name Mathematisches Institut, Technische Universität München, Arcisstraße 21, Postfach 20 24 20, D 8000, München 2, Germany
106 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...