Multi Objective Aerodynamic Optimisation by Means of Robust and Efficient Genetic Algorithm View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1999

AUTHORS

Carlo Poloni

ABSTRACT

In this paper the use of Genetic Algorithms for multi objective optimisation in aerodynamic optimisation is outlined. After a review of existing GA methodologies the operators considered at present the most promising one are described. A simple mathematical test is used for preliminary algorithmic perfomance while in more applicative cases the pressure reconstruction problem of two conflicting aerodynamic profiles is used as benchmark. A full potential transonic solver is at first used showing the performances of the optimisation algorithm employed while final results are obtained using a commercial Navier-Stokes solver with k-e turbulence modelling to reconstruct the geometry of two airfoils working at Mach=0.2 Re=5E6 and Mach=0.77 Re=19.6E6. Even thogh the test case presented might not have a practical application, it shows that direct multi objective optimisation with Navier Stokes solver can be faced with GA. More... »

PAGES

1-24

Book

TITLE

Recent Development of Aerodynamic Design Methodologies

ISBN

978-3-322-89954-5
978-3-322-89952-1

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-322-89952-1_1

DOI

http://dx.doi.org/10.1007/978-3-322-89952-1_1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1015617768


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Trieste", 
          "id": "https://www.grid.ac/institutes/grid.5133.4", 
          "name": [
            "Dipartimento di Energetica, Universit\u00e0 degli Studi di Trieste, Via Valerio 10, 34100\u00a0Trieste, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Poloni", 
        "givenName": "Carlo", 
        "id": "sg:person.013417222033.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013417222033.24"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.2514/6.1994-1896", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000037276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/3.12761", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032675078"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1999", 
    "datePublishedReg": "1999-01-01", 
    "description": "In this paper the use of Genetic Algorithms for multi objective optimisation in aerodynamic optimisation is outlined. After a review of existing GA methodologies the operators considered at present the most promising one are described. A simple mathematical test is used for preliminary algorithmic perfomance while in more applicative cases the pressure reconstruction problem of two conflicting aerodynamic profiles is used as benchmark. A full potential transonic solver is at first used showing the performances of the optimisation algorithm employed while final results are obtained using a commercial Navier-Stokes solver with k-e turbulence modelling to reconstruct the geometry of two airfoils working at Mach=0.2 Re=5E6 and Mach=0.77 Re=19.6E6. Even thogh the test case presented might not have a practical application, it shows that direct multi objective optimisation with Navier Stokes solver can be faced with GA.", 
    "editor": [
      {
        "familyName": "Fujii", 
        "givenName": "Kozo", 
        "type": "Person"
      }, 
      {
        "familyName": "Dulikravich", 
        "givenName": "George S.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-322-89952-1_1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-322-89954-5", 
        "978-3-322-89952-1"
      ], 
      "name": "Recent Development of Aerodynamic Design Methodologies", 
      "type": "Book"
    }, 
    "name": "Multi Objective Aerodynamic Optimisation by Means of Robust and Efficient Genetic Algorithm", 
    "pagination": "1-24", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-322-89952-1_1"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4a6949ec83b297abb485cfe306686fd581f1911e5cbeff298b338680667d5a62"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1015617768"
        ]
      }
    ], 
    "publisher": {
      "location": "Wiesbaden", 
      "name": "Vieweg+Teubner Verlag", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-322-89952-1_1", 
      "https://app.dimensions.ai/details/publication/pub.1015617768"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T19:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000252.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-322-89952-1_1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-322-89952-1_1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-322-89952-1_1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-322-89952-1_1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-322-89952-1_1'


 

This table displays all metadata directly associated to this object as RDF triples.

76 TRIPLES      23 PREDICATES      29 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-322-89952-1_1 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N6f4d421a60fe4828aa4ea656a718db6f
4 schema:citation https://doi.org/10.2514/3.12761
5 https://doi.org/10.2514/6.1994-1896
6 schema:datePublished 1999
7 schema:datePublishedReg 1999-01-01
8 schema:description In this paper the use of Genetic Algorithms for multi objective optimisation in aerodynamic optimisation is outlined. After a review of existing GA methodologies the operators considered at present the most promising one are described. A simple mathematical test is used for preliminary algorithmic perfomance while in more applicative cases the pressure reconstruction problem of two conflicting aerodynamic profiles is used as benchmark. A full potential transonic solver is at first used showing the performances of the optimisation algorithm employed while final results are obtained using a commercial Navier-Stokes solver with k-e turbulence modelling to reconstruct the geometry of two airfoils working at Mach=0.2 Re=5E6 and Mach=0.77 Re=19.6E6. Even thogh the test case presented might not have a practical application, it shows that direct multi objective optimisation with Navier Stokes solver can be faced with GA.
9 schema:editor Nb0dd38221e704d909880023047fe322c
10 schema:genre chapter
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N5cebe58870724491a8d4eb1af4e6d5f1
14 schema:name Multi Objective Aerodynamic Optimisation by Means of Robust and Efficient Genetic Algorithm
15 schema:pagination 1-24
16 schema:productId N22bf2adc279341d8a2a91eef003dc102
17 N353c3c6a05ed49a09342c8f05b608cec
18 Na9e6a1deca8d4d7ba166e0b599bb37ca
19 schema:publisher N2c45b712a2534b59bd26e4ead54fa319
20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015617768
21 https://doi.org/10.1007/978-3-322-89952-1_1
22 schema:sdDatePublished 2019-04-15T19:08
23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
24 schema:sdPublisher N861e557396074d5b8a682e1715854073
25 schema:url http://link.springer.com/10.1007/978-3-322-89952-1_1
26 sgo:license sg:explorer/license/
27 sgo:sdDataset chapters
28 rdf:type schema:Chapter
29 N22bf2adc279341d8a2a91eef003dc102 schema:name dimensions_id
30 schema:value pub.1015617768
31 rdf:type schema:PropertyValue
32 N23c0cef841c54df7bdf017cb6d15a2c9 schema:familyName Dulikravich
33 schema:givenName George S.
34 rdf:type schema:Person
35 N2c45b712a2534b59bd26e4ead54fa319 schema:location Wiesbaden
36 schema:name Vieweg+Teubner Verlag
37 rdf:type schema:Organisation
38 N353c3c6a05ed49a09342c8f05b608cec schema:name readcube_id
39 schema:value 4a6949ec83b297abb485cfe306686fd581f1911e5cbeff298b338680667d5a62
40 rdf:type schema:PropertyValue
41 N3b30ba346f2c421c84c5e76598985c1f schema:familyName Fujii
42 schema:givenName Kozo
43 rdf:type schema:Person
44 N5cebe58870724491a8d4eb1af4e6d5f1 schema:isbn 978-3-322-89952-1
45 978-3-322-89954-5
46 schema:name Recent Development of Aerodynamic Design Methodologies
47 rdf:type schema:Book
48 N6f4d421a60fe4828aa4ea656a718db6f rdf:first sg:person.013417222033.24
49 rdf:rest rdf:nil
50 N78fe2c47e220445fb2050d3408d6c454 rdf:first N23c0cef841c54df7bdf017cb6d15a2c9
51 rdf:rest rdf:nil
52 N861e557396074d5b8a682e1715854073 schema:name Springer Nature - SN SciGraph project
53 rdf:type schema:Organization
54 Na9e6a1deca8d4d7ba166e0b599bb37ca schema:name doi
55 schema:value 10.1007/978-3-322-89952-1_1
56 rdf:type schema:PropertyValue
57 Nb0dd38221e704d909880023047fe322c rdf:first N3b30ba346f2c421c84c5e76598985c1f
58 rdf:rest N78fe2c47e220445fb2050d3408d6c454
59 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
60 schema:name Mathematical Sciences
61 rdf:type schema:DefinedTerm
62 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
63 schema:name Numerical and Computational Mathematics
64 rdf:type schema:DefinedTerm
65 sg:person.013417222033.24 schema:affiliation https://www.grid.ac/institutes/grid.5133.4
66 schema:familyName Poloni
67 schema:givenName Carlo
68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013417222033.24
69 rdf:type schema:Person
70 https://doi.org/10.2514/3.12761 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032675078
71 rdf:type schema:CreativeWork
72 https://doi.org/10.2514/6.1994-1896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000037276
73 rdf:type schema:CreativeWork
74 https://www.grid.ac/institutes/grid.5133.4 schema:alternateName University of Trieste
75 schema:name Dipartimento di Energetica, Università degli Studi di Trieste, Via Valerio 10, 34100 Trieste, Italy
76 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...