Multi Objective Aerodynamic Optimisation by Means of Robust and Efficient Genetic Algorithm View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1999

AUTHORS

Carlo Poloni

ABSTRACT

In this paper the use of Genetic Algorithms for multi objective optimisation in aerodynamic optimisation is outlined. After a review of existing GA methodologies the operators considered at present the most promising one are described. A simple mathematical test is used for preliminary algorithmic perfomance while in more applicative cases the pressure reconstruction problem of two conflicting aerodynamic profiles is used as benchmark. A full potential transonic solver is at first used showing the performances of the optimisation algorithm employed while final results are obtained using a commercial Navier-Stokes solver with k-e turbulence modelling to reconstruct the geometry of two airfoils working at Mach=0.2 Re=5E6 and Mach=0.77 Re=19.6E6. Even thogh the test case presented might not have a practical application, it shows that direct multi objective optimisation with Navier Stokes solver can be faced with GA. More... »

PAGES

1-24

Book

TITLE

Recent Development of Aerodynamic Design Methodologies

ISBN

978-3-322-89954-5
978-3-322-89952-1

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-322-89952-1_1

DOI

http://dx.doi.org/10.1007/978-3-322-89952-1_1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1015617768


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Trieste", 
          "id": "https://www.grid.ac/institutes/grid.5133.4", 
          "name": [
            "Dipartimento di Energetica, Universit\u00e0 degli Studi di Trieste, Via Valerio 10, 34100\u00a0Trieste, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Poloni", 
        "givenName": "Carlo", 
        "id": "sg:person.013417222033.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013417222033.24"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.2514/6.1994-1896", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000037276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/3.12761", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032675078"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1999", 
    "datePublishedReg": "1999-01-01", 
    "description": "In this paper the use of Genetic Algorithms for multi objective optimisation in aerodynamic optimisation is outlined. After a review of existing GA methodologies the operators considered at present the most promising one are described. A simple mathematical test is used for preliminary algorithmic perfomance while in more applicative cases the pressure reconstruction problem of two conflicting aerodynamic profiles is used as benchmark. A full potential transonic solver is at first used showing the performances of the optimisation algorithm employed while final results are obtained using a commercial Navier-Stokes solver with k-e turbulence modelling to reconstruct the geometry of two airfoils working at Mach=0.2 Re=5E6 and Mach=0.77 Re=19.6E6. Even thogh the test case presented might not have a practical application, it shows that direct multi objective optimisation with Navier Stokes solver can be faced with GA.", 
    "editor": [
      {
        "familyName": "Fujii", 
        "givenName": "Kozo", 
        "type": "Person"
      }, 
      {
        "familyName": "Dulikravich", 
        "givenName": "George S.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-322-89952-1_1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-322-89954-5", 
        "978-3-322-89952-1"
      ], 
      "name": "Recent Development of Aerodynamic Design Methodologies", 
      "type": "Book"
    }, 
    "name": "Multi Objective Aerodynamic Optimisation by Means of Robust and Efficient Genetic Algorithm", 
    "pagination": "1-24", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-322-89952-1_1"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4a6949ec83b297abb485cfe306686fd581f1911e5cbeff298b338680667d5a62"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1015617768"
        ]
      }
    ], 
    "publisher": {
      "location": "Wiesbaden", 
      "name": "Vieweg+Teubner Verlag", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-322-89952-1_1", 
      "https://app.dimensions.ai/details/publication/pub.1015617768"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T19:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000252.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-322-89952-1_1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-322-89952-1_1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-322-89952-1_1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-322-89952-1_1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-322-89952-1_1'


 

This table displays all metadata directly associated to this object as RDF triples.

76 TRIPLES      23 PREDICATES      29 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-322-89952-1_1 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N89221cc0763f4764bb7fb4afbad901a6
4 schema:citation https://doi.org/10.2514/3.12761
5 https://doi.org/10.2514/6.1994-1896
6 schema:datePublished 1999
7 schema:datePublishedReg 1999-01-01
8 schema:description In this paper the use of Genetic Algorithms for multi objective optimisation in aerodynamic optimisation is outlined. After a review of existing GA methodologies the operators considered at present the most promising one are described. A simple mathematical test is used for preliminary algorithmic perfomance while in more applicative cases the pressure reconstruction problem of two conflicting aerodynamic profiles is used as benchmark. A full potential transonic solver is at first used showing the performances of the optimisation algorithm employed while final results are obtained using a commercial Navier-Stokes solver with k-e turbulence modelling to reconstruct the geometry of two airfoils working at Mach=0.2 Re=5E6 and Mach=0.77 Re=19.6E6. Even thogh the test case presented might not have a practical application, it shows that direct multi objective optimisation with Navier Stokes solver can be faced with GA.
9 schema:editor Ne55abed831f544b9b04543c31b85bf1f
10 schema:genre chapter
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf Nd525047546f743e2b38ada36dc37fbe2
14 schema:name Multi Objective Aerodynamic Optimisation by Means of Robust and Efficient Genetic Algorithm
15 schema:pagination 1-24
16 schema:productId N127b766b8e314871b91dd80b5b854159
17 Nc560577b0b29452cb11d48644dc2e89a
18 Nd325af78d58d4a21ac54ee53b53b51a1
19 schema:publisher Ndfeafd0126c34c8da2dc4f63a5a1898f
20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015617768
21 https://doi.org/10.1007/978-3-322-89952-1_1
22 schema:sdDatePublished 2019-04-15T19:08
23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
24 schema:sdPublisher N10785b4ac4b047ba9f6182c96c4bbd91
25 schema:url http://link.springer.com/10.1007/978-3-322-89952-1_1
26 sgo:license sg:explorer/license/
27 sgo:sdDataset chapters
28 rdf:type schema:Chapter
29 N10785b4ac4b047ba9f6182c96c4bbd91 schema:name Springer Nature - SN SciGraph project
30 rdf:type schema:Organization
31 N127b766b8e314871b91dd80b5b854159 schema:name dimensions_id
32 schema:value pub.1015617768
33 rdf:type schema:PropertyValue
34 N5f335be3b56449b589c7e75e68473b89 schema:familyName Fujii
35 schema:givenName Kozo
36 rdf:type schema:Person
37 N89221cc0763f4764bb7fb4afbad901a6 rdf:first sg:person.013417222033.24
38 rdf:rest rdf:nil
39 Na476bbabfb194da3b07a4f685918e8d2 schema:familyName Dulikravich
40 schema:givenName George S.
41 rdf:type schema:Person
42 Nb9a2f8db3d374bb69cbd5b0685421492 rdf:first Na476bbabfb194da3b07a4f685918e8d2
43 rdf:rest rdf:nil
44 Nc560577b0b29452cb11d48644dc2e89a schema:name readcube_id
45 schema:value 4a6949ec83b297abb485cfe306686fd581f1911e5cbeff298b338680667d5a62
46 rdf:type schema:PropertyValue
47 Nd325af78d58d4a21ac54ee53b53b51a1 schema:name doi
48 schema:value 10.1007/978-3-322-89952-1_1
49 rdf:type schema:PropertyValue
50 Nd525047546f743e2b38ada36dc37fbe2 schema:isbn 978-3-322-89952-1
51 978-3-322-89954-5
52 schema:name Recent Development of Aerodynamic Design Methodologies
53 rdf:type schema:Book
54 Ndfeafd0126c34c8da2dc4f63a5a1898f schema:location Wiesbaden
55 schema:name Vieweg+Teubner Verlag
56 rdf:type schema:Organisation
57 Ne55abed831f544b9b04543c31b85bf1f rdf:first N5f335be3b56449b589c7e75e68473b89
58 rdf:rest Nb9a2f8db3d374bb69cbd5b0685421492
59 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
60 schema:name Mathematical Sciences
61 rdf:type schema:DefinedTerm
62 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
63 schema:name Numerical and Computational Mathematics
64 rdf:type schema:DefinedTerm
65 sg:person.013417222033.24 schema:affiliation https://www.grid.ac/institutes/grid.5133.4
66 schema:familyName Poloni
67 schema:givenName Carlo
68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013417222033.24
69 rdf:type schema:Person
70 https://doi.org/10.2514/3.12761 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032675078
71 rdf:type schema:CreativeWork
72 https://doi.org/10.2514/6.1994-1896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000037276
73 rdf:type schema:CreativeWork
74 https://www.grid.ac/institutes/grid.5133.4 schema:alternateName University of Trieste
75 schema:name Dipartimento di Energetica, Università degli Studi di Trieste, Via Valerio 10, 34100 Trieste, Italy
76 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...