Parametric Inference in Large Water Quality River Systems View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2019

AUTHORS

Antonio Moreno-Rodenas , Jeroen Langeveld , Francois Clemens

ABSTRACT

Environmental models often contain parameters, which are not measurable, yet conceptual descriptions of some physical process. The value of such parameters is often derived by measuring internal state model variables in the system and indirectly tuning/calibrating the value of the parameters so some degree of match is achieved. Bayesian inference is a widely used tool in which the modeller can transfer some prior beliefs about the parameter space, which is updated when additional knowledge on the system is acquired (e.g. more measurements are available). However, the amount of simulations required to perform a formal inference becomes prohibitive when using computationally expensive models. In this work the inference of the hydraulic and dissolved oxygen processes is presented for a large scale integrated catchment model. Two emulator structures were used to accelerate the sampling of the river flow and dissolved oxygen dynamics. Posterior parameter probability distributions were computed using one year of measured data in the river. More... »

PAGES

307-311

Book

TITLE

New Trends in Urban Drainage Modelling

ISBN

978-3-319-99866-4
978-3-319-99867-1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-99867-1_51

DOI

http://dx.doi.org/10.1007/978-3-319-99867-1_51

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106466805


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Delft University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.5292.c", 
          "name": [
            "Delft University of Technology"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moreno-Rodenas", 
        "givenName": "Antonio", 
        "id": "sg:person.010631220255.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010631220255.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Delft University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.5292.c", 
          "name": [
            "Delft University of Technology"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Langeveld", 
        "givenName": "Jeroen", 
        "id": "sg:person.01050700346.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050700346.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Deltares", 
          "id": "https://www.grid.ac/institutes/grid.6385.8", 
          "name": [
            "Delft University of Technology", 
            "Deltares"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Clemens", 
        "givenName": "Francois", 
        "id": "sg:person.011517660707.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011517660707.69"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1080/1573062x.2013.820332", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013300927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s1064827501387826", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062883896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envsoft.2017.02.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083891686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/w9120926", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093072694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/w9120944", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093167899"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019", 
    "datePublishedReg": "2019-01-01", 
    "description": "Environmental models often contain parameters, which are not measurable, yet conceptual descriptions of some physical process. The value of such parameters is often derived by measuring internal state model variables in the system and indirectly tuning/calibrating the value of the parameters so some degree of match is achieved. Bayesian inference is a widely used tool in which the modeller can transfer some prior beliefs about the parameter space, which is updated when additional knowledge on the system is acquired (e.g. more measurements are available). However, the amount of simulations required to perform a formal inference becomes prohibitive when using computationally expensive models. In this work the inference of the hydraulic and dissolved oxygen processes is presented for a large scale integrated catchment model. Two emulator structures were used to accelerate the sampling of the river flow and dissolved oxygen dynamics. Posterior parameter probability distributions were computed using one year of measured data in the river.", 
    "editor": [
      {
        "familyName": "Mannina", 
        "givenName": "Giorgio", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-99867-1_51", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-99866-4", 
        "978-3-319-99867-1"
      ], 
      "name": "New Trends in Urban Drainage Modelling", 
      "type": "Book"
    }, 
    "name": "Parametric Inference in Large Water Quality River Systems", 
    "pagination": "307-311", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-99867-1_51"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "119d8be525de74f69649230eeea44f8e8331f17cf150b17e7f1156720405fa9f"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106466805"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-99867-1_51", 
      "https://app.dimensions.ai/details/publication/pub.1106466805"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T17:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000494.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-99867-1_51"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-99867-1_51'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-99867-1_51'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-99867-1_51'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-99867-1_51'


 

This table displays all metadata directly associated to this object as RDF triples.

98 TRIPLES      23 PREDICATES      32 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-99867-1_51 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N496d546ab5944b5bb4d4f8b569eade65
4 schema:citation https://doi.org/10.1016/j.envsoft.2017.02.006
5 https://doi.org/10.1080/1573062x.2013.820332
6 https://doi.org/10.1137/s1064827501387826
7 https://doi.org/10.3390/w9120926
8 https://doi.org/10.3390/w9120944
9 schema:datePublished 2019
10 schema:datePublishedReg 2019-01-01
11 schema:description Environmental models often contain parameters, which are not measurable, yet conceptual descriptions of some physical process. The value of such parameters is often derived by measuring internal state model variables in the system and indirectly tuning/calibrating the value of the parameters so some degree of match is achieved. Bayesian inference is a widely used tool in which the modeller can transfer some prior beliefs about the parameter space, which is updated when additional knowledge on the system is acquired (e.g. more measurements are available). However, the amount of simulations required to perform a formal inference becomes prohibitive when using computationally expensive models. In this work the inference of the hydraulic and dissolved oxygen processes is presented for a large scale integrated catchment model. Two emulator structures were used to accelerate the sampling of the river flow and dissolved oxygen dynamics. Posterior parameter probability distributions were computed using one year of measured data in the river.
12 schema:editor Nd51a54d0d0b1466ba87017bc486b81ca
13 schema:genre chapter
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N65a93ae1396b4f21a47a331b8cd1b15d
17 schema:name Parametric Inference in Large Water Quality River Systems
18 schema:pagination 307-311
19 schema:productId N11e465ae468349d0b045cebcc4836d32
20 Nbb8b4cef574b46eb9051ebec18e2c6b0
21 Neccf6408a3534840ba8f980b1f958fbd
22 schema:publisher N76e853a5929c4a958b6d7e5aee3cf1b7
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106466805
24 https://doi.org/10.1007/978-3-319-99867-1_51
25 schema:sdDatePublished 2019-04-15T17:39
26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
27 schema:sdPublisher N4851d8a0255e44839d163280a22d838b
28 schema:url http://link.springer.com/10.1007/978-3-319-99867-1_51
29 sgo:license sg:explorer/license/
30 sgo:sdDataset chapters
31 rdf:type schema:Chapter
32 N11e465ae468349d0b045cebcc4836d32 schema:name dimensions_id
33 schema:value pub.1106466805
34 rdf:type schema:PropertyValue
35 N3a313fa375014b7a9d1ab036922a731f rdf:first sg:person.01050700346.45
36 rdf:rest N4ce0ed37d5244d3d9aa4355fad91d571
37 N4164498f32d940b4855b933fef26a59d schema:familyName Mannina
38 schema:givenName Giorgio
39 rdf:type schema:Person
40 N4851d8a0255e44839d163280a22d838b schema:name Springer Nature - SN SciGraph project
41 rdf:type schema:Organization
42 N496d546ab5944b5bb4d4f8b569eade65 rdf:first sg:person.010631220255.07
43 rdf:rest N3a313fa375014b7a9d1ab036922a731f
44 N4ce0ed37d5244d3d9aa4355fad91d571 rdf:first sg:person.011517660707.69
45 rdf:rest rdf:nil
46 N65a93ae1396b4f21a47a331b8cd1b15d schema:isbn 978-3-319-99866-4
47 978-3-319-99867-1
48 schema:name New Trends in Urban Drainage Modelling
49 rdf:type schema:Book
50 N76e853a5929c4a958b6d7e5aee3cf1b7 schema:location Cham
51 schema:name Springer International Publishing
52 rdf:type schema:Organisation
53 Nbb8b4cef574b46eb9051ebec18e2c6b0 schema:name readcube_id
54 schema:value 119d8be525de74f69649230eeea44f8e8331f17cf150b17e7f1156720405fa9f
55 rdf:type schema:PropertyValue
56 Nd51a54d0d0b1466ba87017bc486b81ca rdf:first N4164498f32d940b4855b933fef26a59d
57 rdf:rest rdf:nil
58 Neccf6408a3534840ba8f980b1f958fbd schema:name doi
59 schema:value 10.1007/978-3-319-99867-1_51
60 rdf:type schema:PropertyValue
61 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
62 schema:name Information and Computing Sciences
63 rdf:type schema:DefinedTerm
64 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
65 schema:name Artificial Intelligence and Image Processing
66 rdf:type schema:DefinedTerm
67 sg:person.01050700346.45 schema:affiliation https://www.grid.ac/institutes/grid.5292.c
68 schema:familyName Langeveld
69 schema:givenName Jeroen
70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050700346.45
71 rdf:type schema:Person
72 sg:person.010631220255.07 schema:affiliation https://www.grid.ac/institutes/grid.5292.c
73 schema:familyName Moreno-Rodenas
74 schema:givenName Antonio
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010631220255.07
76 rdf:type schema:Person
77 sg:person.011517660707.69 schema:affiliation https://www.grid.ac/institutes/grid.6385.8
78 schema:familyName Clemens
79 schema:givenName Francois
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011517660707.69
81 rdf:type schema:Person
82 https://doi.org/10.1016/j.envsoft.2017.02.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083891686
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1080/1573062x.2013.820332 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013300927
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1137/s1064827501387826 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062883896
87 rdf:type schema:CreativeWork
88 https://doi.org/10.3390/w9120926 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093072694
89 rdf:type schema:CreativeWork
90 https://doi.org/10.3390/w9120944 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093167899
91 rdf:type schema:CreativeWork
92 https://www.grid.ac/institutes/grid.5292.c schema:alternateName Delft University of Technology
93 schema:name Delft University of Technology
94 rdf:type schema:Organization
95 https://www.grid.ac/institutes/grid.6385.8 schema:alternateName Deltares
96 schema:name Delft University of Technology
97 Deltares
98 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...