The Automatic Generation of an Efficient Floor Field for CA Simulations in Crowd Management View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018-08-26

AUTHORS

Mohcine Chraibi , Bernhard Steffen

ABSTRACT

The Hermes project [1] demonstrated the usefulness of on site predictive simulations of probable evacuation scenarios for security personnel. However, the hardware needed was prohibitively expensive [2]. For use in crowd management, the software has to run on available computers. The CA methods, which are fast enough, have well known problems with treating corners and turns. The present paper shows how a standard CA method can be modified to produce a realistic movement of people around bends and obstacles by changing the standard floor field. This can be done adaptively allowing for the momentary situation using simple predictions for the immediate future. The approach has one or two tuning parameter that have an obvious meaning and can therefore be set correctly by people not familiar with the inner process of a CA simulation. With this, a high end laptop can simulate more than 100 000 persons faster than real time, which should be enough for most occasions. It is intended to integrate the method into the tool JuPedSim [23]. More... »

PAGES

185-195

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-99813-8_17

DOI

http://dx.doi.org/10.1007/978-3-319-99813-8_17

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106357532


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "J\u00fclich Supercomputing Centre \u2013 Forschungszentrum J\u00fclich GmbH, 52425, J\u00fclich, Germany", 
          "id": "http://www.grid.ac/institutes/grid.8385.6", 
          "name": [
            "J\u00fclich Supercomputing Centre \u2013 Forschungszentrum J\u00fclich GmbH, 52425, J\u00fclich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chraibi", 
        "givenName": "Mohcine", 
        "id": "sg:person.012724113050.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012724113050.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "J\u00fclich Supercomputing Centre \u2013 Forschungszentrum J\u00fclich GmbH, 52425, J\u00fclich, Germany", 
          "id": "http://www.grid.ac/institutes/grid.8385.6", 
          "name": [
            "J\u00fclich Supercomputing Centre \u2013 Forschungszentrum J\u00fclich GmbH, 52425, J\u00fclich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Steffen", 
        "givenName": "Bernhard", 
        "id": "sg:person.013270457265.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013270457265.00"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2018-08-26", 
    "datePublishedReg": "2018-08-26", 
    "description": "The Hermes project [1] demonstrated the usefulness of on site predictive simulations of probable evacuation scenarios for security personnel. However, the hardware needed was prohibitively expensive [2]. For use in crowd management, the software has to run on available computers. The CA methods, which are fast enough, have well known problems with treating corners and turns. The present paper shows how a standard CA method can be modified to produce a realistic movement of people around bends and obstacles by changing the standard floor field. This can be done adaptively allowing for the momentary situation using simple predictions for the immediate future. The approach has one or two tuning parameter that have an obvious meaning and can therefore be set correctly by people not familiar with the inner process of a CA simulation. With this, a high end laptop can simulate more than 100 000 persons faster than real time, which should be enough for most occasions. It is intended to integrate the method into the tool JuPedSim [23].", 
    "editor": [
      {
        "familyName": "Hoshi", 
        "givenName": "Mizuho", 
        "type": "Person"
      }, 
      {
        "familyName": "Seki", 
        "givenName": "Shinnosuke", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-99813-8_17", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-99812-1", 
        "978-3-319-99813-8"
      ], 
      "name": "Developments in Language Theory", 
      "type": "Book"
    }, 
    "keywords": [
      "crowd management", 
      "high end laptop", 
      "automatic generation", 
      "available computers", 
      "realistic movement", 
      "evacuation scenarios", 
      "real time", 
      "security personnel", 
      "Hermes project", 
      "CA simulation", 
      "floor field", 
      "CA method", 
      "tuning parameters", 
      "hardware", 
      "predictive simulations", 
      "momentary situation", 
      "laptops", 
      "software", 
      "computer", 
      "simulations", 
      "obvious meaning", 
      "scenarios", 
      "method", 
      "obstacles", 
      "management", 
      "project", 
      "immediate future", 
      "situation", 
      "field", 
      "people", 
      "generation", 
      "usefulness", 
      "prediction", 
      "most occasions", 
      "simple predictions", 
      "personnel", 
      "process", 
      "present paper", 
      "time", 
      "use", 
      "corner", 
      "future", 
      "inner processes", 
      "movement", 
      "parameters", 
      "persons", 
      "meaning", 
      "turn", 
      "occasions", 
      "bend", 
      "paper", 
      "problem", 
      "approach", 
      "site predictive simulations", 
      "probable evacuation scenarios", 
      "standard CA method", 
      "standard floor field", 
      "end laptop", 
      "tool JuPedSim", 
      "JuPedSim", 
      "Efficient Floor Field"
    ], 
    "name": "The Automatic Generation of an Efficient Floor Field for CA Simulations in Crowd Management", 
    "pagination": "185-195", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106357532"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-99813-8_17"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-99813-8_17", 
      "https://app.dimensions.ai/details/publication/pub.1106357532"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_399.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-99813-8_17"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-99813-8_17'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-99813-8_17'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-99813-8_17'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-99813-8_17'


 

This table displays all metadata directly associated to this object as RDF triples.

133 TRIPLES      23 PREDICATES      86 URIs      79 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-99813-8_17 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N32648784882440c288b18c185935fee2
4 schema:datePublished 2018-08-26
5 schema:datePublishedReg 2018-08-26
6 schema:description The Hermes project [1] demonstrated the usefulness of on site predictive simulations of probable evacuation scenarios for security personnel. However, the hardware needed was prohibitively expensive [2]. For use in crowd management, the software has to run on available computers. The CA methods, which are fast enough, have well known problems with treating corners and turns. The present paper shows how a standard CA method can be modified to produce a realistic movement of people around bends and obstacles by changing the standard floor field. This can be done adaptively allowing for the momentary situation using simple predictions for the immediate future. The approach has one or two tuning parameter that have an obvious meaning and can therefore be set correctly by people not familiar with the inner process of a CA simulation. With this, a high end laptop can simulate more than 100 000 persons faster than real time, which should be enough for most occasions. It is intended to integrate the method into the tool JuPedSim [23].
7 schema:editor N43314cf3011644b8b118de9512848a3b
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N78610659db6049c5807bfded3bdd330b
12 schema:keywords CA method
13 CA simulation
14 Efficient Floor Field
15 Hermes project
16 JuPedSim
17 approach
18 automatic generation
19 available computers
20 bend
21 computer
22 corner
23 crowd management
24 end laptop
25 evacuation scenarios
26 field
27 floor field
28 future
29 generation
30 hardware
31 high end laptop
32 immediate future
33 inner processes
34 laptops
35 management
36 meaning
37 method
38 momentary situation
39 most occasions
40 movement
41 obstacles
42 obvious meaning
43 occasions
44 paper
45 parameters
46 people
47 personnel
48 persons
49 prediction
50 predictive simulations
51 present paper
52 probable evacuation scenarios
53 problem
54 process
55 project
56 real time
57 realistic movement
58 scenarios
59 security personnel
60 simple predictions
61 simulations
62 site predictive simulations
63 situation
64 software
65 standard CA method
66 standard floor field
67 time
68 tool JuPedSim
69 tuning parameters
70 turn
71 use
72 usefulness
73 schema:name The Automatic Generation of an Efficient Floor Field for CA Simulations in Crowd Management
74 schema:pagination 185-195
75 schema:productId N27f12ecec3a84530bc5898ba921513ef
76 Nbe9601f543e7472591fd12fadfe6a89c
77 schema:publisher N1d80fccc334a4f028963caa4e3f2d476
78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106357532
79 https://doi.org/10.1007/978-3-319-99813-8_17
80 schema:sdDatePublished 2022-01-01T19:22
81 schema:sdLicense https://scigraph.springernature.com/explorer/license/
82 schema:sdPublisher Nc68177fbfb8f478a98f3b70c0db7acb1
83 schema:url https://doi.org/10.1007/978-3-319-99813-8_17
84 sgo:license sg:explorer/license/
85 sgo:sdDataset chapters
86 rdf:type schema:Chapter
87 N1d80fccc334a4f028963caa4e3f2d476 schema:name Springer Nature
88 rdf:type schema:Organisation
89 N27f12ecec3a84530bc5898ba921513ef schema:name doi
90 schema:value 10.1007/978-3-319-99813-8_17
91 rdf:type schema:PropertyValue
92 N32648784882440c288b18c185935fee2 rdf:first sg:person.012724113050.28
93 rdf:rest N75403b7e67de4b5abd0114b2a5d5e0d0
94 N4324c06339a04594b254e3dc7cab5f5e schema:familyName Seki
95 schema:givenName Shinnosuke
96 rdf:type schema:Person
97 N43314cf3011644b8b118de9512848a3b rdf:first N99ff795613954da7aecb635cd715c971
98 rdf:rest Nbcc5722f028144d79907263488a95514
99 N75403b7e67de4b5abd0114b2a5d5e0d0 rdf:first sg:person.013270457265.00
100 rdf:rest rdf:nil
101 N78610659db6049c5807bfded3bdd330b schema:isbn 978-3-319-99812-1
102 978-3-319-99813-8
103 schema:name Developments in Language Theory
104 rdf:type schema:Book
105 N99ff795613954da7aecb635cd715c971 schema:familyName Hoshi
106 schema:givenName Mizuho
107 rdf:type schema:Person
108 Nbcc5722f028144d79907263488a95514 rdf:first N4324c06339a04594b254e3dc7cab5f5e
109 rdf:rest rdf:nil
110 Nbe9601f543e7472591fd12fadfe6a89c schema:name dimensions_id
111 schema:value pub.1106357532
112 rdf:type schema:PropertyValue
113 Nc68177fbfb8f478a98f3b70c0db7acb1 schema:name Springer Nature - SN SciGraph project
114 rdf:type schema:Organization
115 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
116 schema:name Information and Computing Sciences
117 rdf:type schema:DefinedTerm
118 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
119 schema:name Artificial Intelligence and Image Processing
120 rdf:type schema:DefinedTerm
121 sg:person.012724113050.28 schema:affiliation grid-institutes:grid.8385.6
122 schema:familyName Chraibi
123 schema:givenName Mohcine
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012724113050.28
125 rdf:type schema:Person
126 sg:person.013270457265.00 schema:affiliation grid-institutes:grid.8385.6
127 schema:familyName Steffen
128 schema:givenName Bernhard
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013270457265.00
130 rdf:type schema:Person
131 grid-institutes:grid.8385.6 schema:alternateName Jülich Supercomputing Centre – Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
132 schema:name Jülich Supercomputing Centre – Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
133 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...