Regular Inference on Artificial Neural Networks View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018

AUTHORS

Franz Mayr , Sergio Yovine

ABSTRACT

This paper explores the general problem of explaining the behavior of artificial neural networks (ANN). The goal is to construct a representation which enhances human understanding of an ANN as a sequence classifier, with the purpose of providing insight on the rationale behind the classification of a sequence as positive or negative, but also to enable performing further analyses, such as automata-theoretic formal verification. In particular, a probabilistic algorithm for constructing a deterministic finite automaton which is approximately correct with respect to an artificial neural network is proposed. More... »

PAGES

350-369

Book

TITLE

Machine Learning and Knowledge Extraction

ISBN

978-3-319-99739-1
978-3-319-99740-7

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-99740-7_25

DOI

http://dx.doi.org/10.1007/978-3-319-99740-7_25

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106328946


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Universidad Ort Uruguay", 
          "id": "https://www.grid.ac/institutes/grid.442045.3", 
          "name": [
            "Universidad ORT Uruguay"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mayr", 
        "givenName": "Franz", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universidad Ort Uruguay", 
          "id": "https://www.grid.ac/institutes/grid.442045.3", 
          "name": [
            "Universidad ORT Uruguay"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yovine", 
        "givenName": "Sergio", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/3-540-45014-9_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000204280", 
          "https://doi.org/10.1007/3-540-45014-9_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-45014-9_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000204280", 
          "https://doi.org/10.1007/3-540-45014-9_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/235809.235811", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006084109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature14539", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010020120", 
          "https://doi.org/10.1038/nature14539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/129712.129746", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013316462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/neco.1992.4.3.393", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013456524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patrec.2004.09.045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018086054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1467-0895(02)00068-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019599227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1467-0895(02)00068-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019599227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0019-9958(78)90562-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025335450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02478259", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028715170", 
          "https://doi.org/10.1007/bf02478259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1882471.1882478", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035938734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/neco.1997.9.8.1735", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038140272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1968.1972", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038881641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0890-5401(87)90052-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044564434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/72.963769", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061219644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/taslp.2014.2303296", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061517266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tkde.2015.2510010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061663200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/jaiscr-2017-0019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085137813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icassp.2014.6854926", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094456460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icassp.2015.7178304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095173451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18653/v1/d16-1011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098652906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18653/v1/d16-1093", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098653312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9781139194655", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098669587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/3236009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106289667"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018", 
    "datePublishedReg": "2018-01-01", 
    "description": "This paper explores the general problem of explaining the behavior of artificial neural networks (ANN). The goal is to construct a representation which enhances human understanding of an ANN as a sequence classifier, with the purpose of providing insight on the rationale behind the classification of a sequence as positive or negative, but also to enable performing further analyses, such as automata-theoretic formal verification. In particular, a probabilistic algorithm for constructing a deterministic finite automaton which is approximately correct with respect to an artificial neural network is proposed.", 
    "editor": [
      {
        "familyName": "Holzinger", 
        "givenName": "Andreas", 
        "type": "Person"
      }, 
      {
        "familyName": "Kieseberg", 
        "givenName": "Peter", 
        "type": "Person"
      }, 
      {
        "familyName": "Tjoa", 
        "givenName": "A Min", 
        "type": "Person"
      }, 
      {
        "familyName": "Weippl", 
        "givenName": "Edgar", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-99740-7_25", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-99739-1", 
        "978-3-319-99740-7"
      ], 
      "name": "Machine Learning and Knowledge Extraction", 
      "type": "Book"
    }, 
    "name": "Regular Inference on Artificial Neural\u00a0Networks", 
    "pagination": "350-369", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-99740-7_25"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3c8484f0c37824de00de5c412e4dd125666c11356181c05021c236baa275a2a5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106328946"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-99740-7_25", 
      "https://app.dimensions.ai/details/publication/pub.1106328946"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T16:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000605.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-99740-7_25"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-99740-7_25'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-99740-7_25'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-99740-7_25'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-99740-7_25'


 

This table displays all metadata directly associated to this object as RDF triples.

157 TRIPLES      23 PREDICATES      50 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-99740-7_25 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N428ac8ae73084b3c95236f39af0829db
4 schema:citation sg:pub.10.1007/3-540-45014-9_1
5 sg:pub.10.1007/bf02478259
6 sg:pub.10.1038/nature14539
7 https://doi.org/10.1016/0890-5401(87)90052-6
8 https://doi.org/10.1016/j.patrec.2004.09.045
9 https://doi.org/10.1016/s0019-9958(78)90562-4
10 https://doi.org/10.1016/s1467-0895(02)00068-4
11 https://doi.org/10.1017/cbo9781139194655
12 https://doi.org/10.1109/72.963769
13 https://doi.org/10.1109/icassp.2014.6854926
14 https://doi.org/10.1109/icassp.2015.7178304
15 https://doi.org/10.1109/taslp.2014.2303296
16 https://doi.org/10.1109/tkde.2015.2510010
17 https://doi.org/10.1145/129712.129746
18 https://doi.org/10.1145/1882471.1882478
19 https://doi.org/10.1145/1968.1972
20 https://doi.org/10.1145/235809.235811
21 https://doi.org/10.1145/3236009
22 https://doi.org/10.1162/neco.1992.4.3.393
23 https://doi.org/10.1162/neco.1997.9.8.1735
24 https://doi.org/10.1515/jaiscr-2017-0019
25 https://doi.org/10.18653/v1/d16-1011
26 https://doi.org/10.18653/v1/d16-1093
27 schema:datePublished 2018
28 schema:datePublishedReg 2018-01-01
29 schema:description This paper explores the general problem of explaining the behavior of artificial neural networks (ANN). The goal is to construct a representation which enhances human understanding of an ANN as a sequence classifier, with the purpose of providing insight on the rationale behind the classification of a sequence as positive or negative, but also to enable performing further analyses, such as automata-theoretic formal verification. In particular, a probabilistic algorithm for constructing a deterministic finite automaton which is approximately correct with respect to an artificial neural network is proposed.
30 schema:editor Nd28f73c0280f48738690604147a23d5a
31 schema:genre chapter
32 schema:inLanguage en
33 schema:isAccessibleForFree false
34 schema:isPartOf N4735202787024d15b4569d418c89dea5
35 schema:name Regular Inference on Artificial Neural Networks
36 schema:pagination 350-369
37 schema:productId N3f36a6535e434d2b9eed59f7bc5a01e9
38 N736013f3d2eb4518bb44f307f347a6de
39 N809bc731840f46a3b23af908ab3e696a
40 schema:publisher N966b132c12c142129929f28dcddc22a2
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106328946
42 https://doi.org/10.1007/978-3-319-99740-7_25
43 schema:sdDatePublished 2019-04-15T16:00
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher N7ee65b5bbf6e438e9311063ba8ec8e08
46 schema:url http://link.springer.com/10.1007/978-3-319-99740-7_25
47 sgo:license sg:explorer/license/
48 sgo:sdDataset chapters
49 rdf:type schema:Chapter
50 N10462bd1d96a42e4ae36c70c508b28a4 schema:familyName Holzinger
51 schema:givenName Andreas
52 rdf:type schema:Person
53 N13f68695ad254a238f242a66630ce3a6 rdf:first N40d4a23bb2934fbcafaa3369ce02124d
54 rdf:rest rdf:nil
55 N270e0144fe804e0db37db0eb140c01f3 schema:familyName Kieseberg
56 schema:givenName Peter
57 rdf:type schema:Person
58 N2b6ed963ffa24ab4a426c98a53aa4c41 rdf:first N270e0144fe804e0db37db0eb140c01f3
59 rdf:rest N4640c1092f7047db87b8655f94e6e089
60 N3f36a6535e434d2b9eed59f7bc5a01e9 schema:name doi
61 schema:value 10.1007/978-3-319-99740-7_25
62 rdf:type schema:PropertyValue
63 N40229cc8c82c4644beb9c66c892ea147 schema:affiliation https://www.grid.ac/institutes/grid.442045.3
64 schema:familyName Mayr
65 schema:givenName Franz
66 rdf:type schema:Person
67 N40d4a23bb2934fbcafaa3369ce02124d schema:familyName Weippl
68 schema:givenName Edgar
69 rdf:type schema:Person
70 N428ac8ae73084b3c95236f39af0829db rdf:first N40229cc8c82c4644beb9c66c892ea147
71 rdf:rest Nf39df3078cef4bd4a6c72ebca3a149a0
72 N4640c1092f7047db87b8655f94e6e089 rdf:first Nceaf68ba2696440f8bd8270900350d1c
73 rdf:rest N13f68695ad254a238f242a66630ce3a6
74 N4735202787024d15b4569d418c89dea5 schema:isbn 978-3-319-99739-1
75 978-3-319-99740-7
76 schema:name Machine Learning and Knowledge Extraction
77 rdf:type schema:Book
78 N736013f3d2eb4518bb44f307f347a6de schema:name readcube_id
79 schema:value 3c8484f0c37824de00de5c412e4dd125666c11356181c05021c236baa275a2a5
80 rdf:type schema:PropertyValue
81 N7ee65b5bbf6e438e9311063ba8ec8e08 schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 N809bc731840f46a3b23af908ab3e696a schema:name dimensions_id
84 schema:value pub.1106328946
85 rdf:type schema:PropertyValue
86 N966b132c12c142129929f28dcddc22a2 schema:location Cham
87 schema:name Springer International Publishing
88 rdf:type schema:Organisation
89 Nceaf68ba2696440f8bd8270900350d1c schema:familyName Tjoa
90 schema:givenName A Min
91 rdf:type schema:Person
92 Nd28f73c0280f48738690604147a23d5a rdf:first N10462bd1d96a42e4ae36c70c508b28a4
93 rdf:rest N2b6ed963ffa24ab4a426c98a53aa4c41
94 Ndd5f9b403b7e45b4b498a7257e6606da schema:affiliation https://www.grid.ac/institutes/grid.442045.3
95 schema:familyName Yovine
96 schema:givenName Sergio
97 rdf:type schema:Person
98 Nf39df3078cef4bd4a6c72ebca3a149a0 rdf:first Ndd5f9b403b7e45b4b498a7257e6606da
99 rdf:rest rdf:nil
100 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
101 schema:name Information and Computing Sciences
102 rdf:type schema:DefinedTerm
103 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
104 schema:name Artificial Intelligence and Image Processing
105 rdf:type schema:DefinedTerm
106 sg:pub.10.1007/3-540-45014-9_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000204280
107 https://doi.org/10.1007/3-540-45014-9_1
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/bf02478259 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028715170
110 https://doi.org/10.1007/bf02478259
111 rdf:type schema:CreativeWork
112 sg:pub.10.1038/nature14539 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010020120
113 https://doi.org/10.1038/nature14539
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/0890-5401(87)90052-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044564434
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.patrec.2004.09.045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018086054
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/s0019-9958(78)90562-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025335450
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/s1467-0895(02)00068-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019599227
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1017/cbo9781139194655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098669587
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1109/72.963769 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061219644
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1109/icassp.2014.6854926 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094456460
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1109/icassp.2015.7178304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095173451
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1109/taslp.2014.2303296 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061517266
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1109/tkde.2015.2510010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061663200
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1145/129712.129746 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013316462
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1145/1882471.1882478 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035938734
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1145/1968.1972 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038881641
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1145/235809.235811 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006084109
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1145/3236009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106289667
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1162/neco.1992.4.3.393 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013456524
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1162/neco.1997.9.8.1735 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038140272
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1515/jaiscr-2017-0019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085137813
150 rdf:type schema:CreativeWork
151 https://doi.org/10.18653/v1/d16-1011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098652906
152 rdf:type schema:CreativeWork
153 https://doi.org/10.18653/v1/d16-1093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098653312
154 rdf:type schema:CreativeWork
155 https://www.grid.ac/institutes/grid.442045.3 schema:alternateName Universidad Ort Uruguay
156 schema:name Universidad ORT Uruguay
157 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...