Hybrid Supercomputer Desmos with Torus Angara Interconnect: Efficiency Analysis and Optimization View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018

AUTHORS

Nikolay Kondratyuk , Grigory Smirnov , Ekaterina Dlinnova , Sergey Biryukov , Vladimir Stegailov

ABSTRACT

The paper describes the first experience of practical deployment of the hybrid supercomputer Desmos at the Joint Institute for High Temperatures of the Russian Academy of Sciences (JIHT RAS). We consider job scheduling statistics, energy efficiency, case studies of GPU acceleration efficiency and benchmarks of the distributed storage with a parallel file system. More... »

PAGES

77-91

Book

TITLE

Parallel Computational Technologies

ISBN

978-3-319-99672-1
978-3-319-99673-8

From Grant

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-99673-8_6

DOI

http://dx.doi.org/10.1007/978-3-319-99673-8_6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106341599


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0307", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Theoretical and Computational Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Moscow Institute of Physics and Technology", 
          "id": "https://www.grid.ac/institutes/grid.18763.3b", 
          "name": [
            "Joint Institute for High Temperatures of the RAS", 
            "Moscow Institute of Physics and Technology"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kondratyuk", 
        "givenName": "Nikolay", 
        "id": "sg:person.015704653651.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015704653651.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Joint Institute for High Temperatures of the RAS"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Smirnov", 
        "givenName": "Grigory", 
        "id": "sg:person.01176201755.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176201755.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Research University Higher School of Economics", 
          "id": "https://www.grid.ac/institutes/grid.410682.9", 
          "name": [
            "National Research University Higher School of Economics"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dlinnova", 
        "givenName": "Ekaterina", 
        "id": "sg:person.014300156560.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014300156560.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "JSC NICEVT"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Biryukov", 
        "givenName": "Sergey", 
        "id": "sg:person.013473123010.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013473123010.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Joint Institute for High Temperatures of the RAS"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stegailov", 
        "givenName": "Vladimir", 
        "id": "sg:person.013675326625.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013675326625.36"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s0965545x16030135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001814196", 
          "https://doi.org/10.1134/s0965545x16030135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0965545x16030135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001814196", 
          "https://doi.org/10.1134/s0965545x16030135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2807591.2807653", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008315180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molstruc.2016.09.064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008323728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0036024416030031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010841098", 
          "https://doi.org/10.1134/s0036024416030031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.commatsci.2015.12.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010916657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-38750-0_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017414316", 
          "https://doi.org/10.1007/978-3-642-38750-0_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jpdc.2016.06.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018699987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/10968987_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025874359", 
          "https://doi.org/10.1007/10968987_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/10968987_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025874359", 
          "https://doi.org/10.1007/10968987_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jcc.24030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026487618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c6cp05552d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034439357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2807591.2807644", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038255952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00268976.2015.1105390", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044401403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-21909-7_45", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047380767", 
          "https://doi.org/10.1007/978-3-319-21909-7_45"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0018151x15060188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052580169", 
          "https://doi.org/10.1134/s0018151x15060188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ct100701w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055423731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ct100701w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055423731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.92.224102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060648095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.92.224102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060648095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1147/rd.492.0265", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063182824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-55669-7_7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084680822", 
          "https://doi.org/10.1007/978-3-319-55669-7_7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.future.2017.04.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084899029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-71255-0_35", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092693612", 
          "https://doi.org/10.1007/978-3-319-71255-0_35"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/hpca.2015.7056068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093646079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icpp.1999.797388", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093954145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/sc.2016.6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094528632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cloudtech.2016.7847712", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094551886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-6596/946/1/012044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101191842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-6596/946/1/012094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101191892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-78054-2_8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101696248", 
          "https://doi.org/10.1007/978-3-319-78054-2_8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-78024-5_29", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101700471", 
          "https://doi.org/10.1007/978-3-319-78024-5_29"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018", 
    "datePublishedReg": "2018-01-01", 
    "description": "The paper describes the first experience of practical deployment of the hybrid supercomputer Desmos at the Joint Institute for High Temperatures of the Russian Academy of Sciences (JIHT RAS). We consider job scheduling statistics, energy efficiency, case studies of GPU acceleration efficiency and benchmarks of the distributed storage with a parallel file system.", 
    "editor": [
      {
        "familyName": "Sokolinsky", 
        "givenName": "Leonid", 
        "type": "Person"
      }, 
      {
        "familyName": "Zymbler", 
        "givenName": "Mikhail", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-99673-8_6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4896888", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": {
      "isbn": [
        "978-3-319-99672-1", 
        "978-3-319-99673-8"
      ], 
      "name": "Parallel Computational Technologies", 
      "type": "Book"
    }, 
    "name": "Hybrid Supercomputer Desmos with\u00a0Torus Angara Interconnect: Efficiency Analysis and Optimization", 
    "pagination": "77-91", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-99673-8_6"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "bd04c20a4787e32b457baedbe47f842e98afb0f3918e0480964efabb7e2f3bed"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106341599"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-99673-8_6", 
      "https://app.dimensions.ai/details/publication/pub.1106341599"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T19:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000605.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-99673-8_6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-99673-8_6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-99673-8_6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-99673-8_6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-99673-8_6'


 

This table displays all metadata directly associated to this object as RDF triples.

204 TRIPLES      23 PREDICATES      55 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-99673-8_6 schema:about anzsrc-for:03
2 anzsrc-for:0307
3 schema:author Nf924132ce0664c619091cb5c86dbec7f
4 schema:citation sg:pub.10.1007/10968987_3
5 sg:pub.10.1007/978-3-319-21909-7_45
6 sg:pub.10.1007/978-3-319-55669-7_7
7 sg:pub.10.1007/978-3-319-71255-0_35
8 sg:pub.10.1007/978-3-319-78024-5_29
9 sg:pub.10.1007/978-3-319-78054-2_8
10 sg:pub.10.1007/978-3-642-38750-0_1
11 sg:pub.10.1134/s0018151x15060188
12 sg:pub.10.1134/s0036024416030031
13 sg:pub.10.1134/s0965545x16030135
14 https://doi.org/10.1002/jcc.24030
15 https://doi.org/10.1016/j.commatsci.2015.12.008
16 https://doi.org/10.1016/j.future.2017.04.030
17 https://doi.org/10.1016/j.jpdc.2016.06.013
18 https://doi.org/10.1016/j.molstruc.2016.09.064
19 https://doi.org/10.1021/ct100701w
20 https://doi.org/10.1039/c6cp05552d
21 https://doi.org/10.1080/00268976.2015.1105390
22 https://doi.org/10.1088/1742-6596/946/1/012044
23 https://doi.org/10.1088/1742-6596/946/1/012094
24 https://doi.org/10.1103/physrevb.92.224102
25 https://doi.org/10.1109/cloudtech.2016.7847712
26 https://doi.org/10.1109/hpca.2015.7056068
27 https://doi.org/10.1109/icpp.1999.797388
28 https://doi.org/10.1109/sc.2016.6
29 https://doi.org/10.1145/2807591.2807644
30 https://doi.org/10.1145/2807591.2807653
31 https://doi.org/10.1147/rd.492.0265
32 schema:datePublished 2018
33 schema:datePublishedReg 2018-01-01
34 schema:description The paper describes the first experience of practical deployment of the hybrid supercomputer Desmos at the Joint Institute for High Temperatures of the Russian Academy of Sciences (JIHT RAS). We consider job scheduling statistics, energy efficiency, case studies of GPU acceleration efficiency and benchmarks of the distributed storage with a parallel file system.
35 schema:editor Nf61f9a88f672494da84061b67a0a99f4
36 schema:genre chapter
37 schema:inLanguage en
38 schema:isAccessibleForFree false
39 schema:isPartOf N89439daf0c46483a81a7daea4072ee59
40 schema:name Hybrid Supercomputer Desmos with Torus Angara Interconnect: Efficiency Analysis and Optimization
41 schema:pagination 77-91
42 schema:productId N14368050e3d04dab9af87a0df49a33c1
43 N8a3f21ad2dee4ab28b7caf647578edef
44 Ndca1b757c2c84b32b323c30f45c4ae9b
45 schema:publisher Na2cfd88474a7450a8e83f5b2c652aaf1
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106341599
47 https://doi.org/10.1007/978-3-319-99673-8_6
48 schema:sdDatePublished 2019-04-15T19:49
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher N52881810dab948378ad95e4329874bd7
51 schema:url http://link.springer.com/10.1007/978-3-319-99673-8_6
52 sgo:license sg:explorer/license/
53 sgo:sdDataset chapters
54 rdf:type schema:Chapter
55 N14368050e3d04dab9af87a0df49a33c1 schema:name readcube_id
56 schema:value bd04c20a4787e32b457baedbe47f842e98afb0f3918e0480964efabb7e2f3bed
57 rdf:type schema:PropertyValue
58 N1a678a1aaf434575a386ff5bb32bbe76 schema:name JSC NICEVT
59 rdf:type schema:Organization
60 N52881810dab948378ad95e4329874bd7 schema:name Springer Nature - SN SciGraph project
61 rdf:type schema:Organization
62 N5e330e759d7a471b87055d4bf5c46d30 rdf:first N6723df0e13154900bb996859e0522d4e
63 rdf:rest rdf:nil
64 N6723df0e13154900bb996859e0522d4e schema:familyName Zymbler
65 schema:givenName Mikhail
66 rdf:type schema:Person
67 N6b71ffdad2234d3d8aa0557b5cccd3be rdf:first sg:person.014300156560.12
68 rdf:rest Na7748d21282a4fe688b09fc139b78974
69 N89439daf0c46483a81a7daea4072ee59 schema:isbn 978-3-319-99672-1
70 978-3-319-99673-8
71 schema:name Parallel Computational Technologies
72 rdf:type schema:Book
73 N8a3f21ad2dee4ab28b7caf647578edef schema:name dimensions_id
74 schema:value pub.1106341599
75 rdf:type schema:PropertyValue
76 Na2cfd88474a7450a8e83f5b2c652aaf1 schema:location Cham
77 schema:name Springer International Publishing
78 rdf:type schema:Organisation
79 Na3278e078d844dd2a218c0f7ec4262c5 schema:familyName Sokolinsky
80 schema:givenName Leonid
81 rdf:type schema:Person
82 Na7748d21282a4fe688b09fc139b78974 rdf:first sg:person.013473123010.31
83 rdf:rest Nf26e5b207ab84d15a8ac3ab31312c571
84 Nae47e68f8c1843ac831d813e46a9726d rdf:first sg:person.01176201755.87
85 rdf:rest N6b71ffdad2234d3d8aa0557b5cccd3be
86 Nce439f8f72b243b98793f80491be7469 schema:name Joint Institute for High Temperatures of the RAS
87 rdf:type schema:Organization
88 Ndca1b757c2c84b32b323c30f45c4ae9b schema:name doi
89 schema:value 10.1007/978-3-319-99673-8_6
90 rdf:type schema:PropertyValue
91 Ne7fc7fdb681e4679976b7b0c7fdcc849 schema:name Joint Institute for High Temperatures of the RAS
92 rdf:type schema:Organization
93 Nf26e5b207ab84d15a8ac3ab31312c571 rdf:first sg:person.013675326625.36
94 rdf:rest rdf:nil
95 Nf61f9a88f672494da84061b67a0a99f4 rdf:first Na3278e078d844dd2a218c0f7ec4262c5
96 rdf:rest N5e330e759d7a471b87055d4bf5c46d30
97 Nf924132ce0664c619091cb5c86dbec7f rdf:first sg:person.015704653651.65
98 rdf:rest Nae47e68f8c1843ac831d813e46a9726d
99 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
100 schema:name Chemical Sciences
101 rdf:type schema:DefinedTerm
102 anzsrc-for:0307 schema:inDefinedTermSet anzsrc-for:
103 schema:name Theoretical and Computational Chemistry
104 rdf:type schema:DefinedTerm
105 sg:grant.4896888 http://pending.schema.org/fundedItem sg:pub.10.1007/978-3-319-99673-8_6
106 rdf:type schema:MonetaryGrant
107 sg:person.01176201755.87 schema:affiliation Nce439f8f72b243b98793f80491be7469
108 schema:familyName Smirnov
109 schema:givenName Grigory
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176201755.87
111 rdf:type schema:Person
112 sg:person.013473123010.31 schema:affiliation N1a678a1aaf434575a386ff5bb32bbe76
113 schema:familyName Biryukov
114 schema:givenName Sergey
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013473123010.31
116 rdf:type schema:Person
117 sg:person.013675326625.36 schema:affiliation Ne7fc7fdb681e4679976b7b0c7fdcc849
118 schema:familyName Stegailov
119 schema:givenName Vladimir
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013675326625.36
121 rdf:type schema:Person
122 sg:person.014300156560.12 schema:affiliation https://www.grid.ac/institutes/grid.410682.9
123 schema:familyName Dlinnova
124 schema:givenName Ekaterina
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014300156560.12
126 rdf:type schema:Person
127 sg:person.015704653651.65 schema:affiliation https://www.grid.ac/institutes/grid.18763.3b
128 schema:familyName Kondratyuk
129 schema:givenName Nikolay
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015704653651.65
131 rdf:type schema:Person
132 sg:pub.10.1007/10968987_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025874359
133 https://doi.org/10.1007/10968987_3
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/978-3-319-21909-7_45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047380767
136 https://doi.org/10.1007/978-3-319-21909-7_45
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/978-3-319-55669-7_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084680822
139 https://doi.org/10.1007/978-3-319-55669-7_7
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/978-3-319-71255-0_35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092693612
142 https://doi.org/10.1007/978-3-319-71255-0_35
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/978-3-319-78024-5_29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101700471
145 https://doi.org/10.1007/978-3-319-78024-5_29
146 rdf:type schema:CreativeWork
147 sg:pub.10.1007/978-3-319-78054-2_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101696248
148 https://doi.org/10.1007/978-3-319-78054-2_8
149 rdf:type schema:CreativeWork
150 sg:pub.10.1007/978-3-642-38750-0_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017414316
151 https://doi.org/10.1007/978-3-642-38750-0_1
152 rdf:type schema:CreativeWork
153 sg:pub.10.1134/s0018151x15060188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052580169
154 https://doi.org/10.1134/s0018151x15060188
155 rdf:type schema:CreativeWork
156 sg:pub.10.1134/s0036024416030031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010841098
157 https://doi.org/10.1134/s0036024416030031
158 rdf:type schema:CreativeWork
159 sg:pub.10.1134/s0965545x16030135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001814196
160 https://doi.org/10.1134/s0965545x16030135
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1002/jcc.24030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026487618
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.commatsci.2015.12.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010916657
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.future.2017.04.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084899029
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.jpdc.2016.06.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018699987
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.molstruc.2016.09.064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008323728
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1021/ct100701w schema:sameAs https://app.dimensions.ai/details/publication/pub.1055423731
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1039/c6cp05552d schema:sameAs https://app.dimensions.ai/details/publication/pub.1034439357
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1080/00268976.2015.1105390 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044401403
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1088/1742-6596/946/1/012044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101191842
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1088/1742-6596/946/1/012094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101191892
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1103/physrevb.92.224102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060648095
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1109/cloudtech.2016.7847712 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094551886
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1109/hpca.2015.7056068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093646079
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1109/icpp.1999.797388 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093954145
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1109/sc.2016.6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094528632
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1145/2807591.2807644 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038255952
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1145/2807591.2807653 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008315180
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1147/rd.492.0265 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063182824
197 rdf:type schema:CreativeWork
198 https://www.grid.ac/institutes/grid.18763.3b schema:alternateName Moscow Institute of Physics and Technology
199 schema:name Joint Institute for High Temperatures of the RAS
200 Moscow Institute of Physics and Technology
201 rdf:type schema:Organization
202 https://www.grid.ac/institutes/grid.410682.9 schema:alternateName National Research University Higher School of Economics
203 schema:name National Research University Higher School of Economics
204 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...