A Probabilistic Tree-Based Representation for Non-convex Minimum Cost Flow Problems View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018-08-22

AUTHORS

Behrooz Ghasemishabankareh , Melih Ozlen , Frank Neumann , Xiaodong Li

ABSTRACT

Network flow optimisation has many real-world applications. The minimum cost flow problem (MCFP) is one of the most common network flow problems. Mathematical programming methods often assume the linearity and convexity of the underlying cost function, which is not realistic in many real-world situations. Solving large-sized MCFPs with nonlinear non-convex cost functions poses a much harder problem. In this paper, we propose a new representation scheme for solving non-convex MCFPs using genetic algorithms (GAs). The most common representation scheme for solving the MCFP in the literature using a GA is priority-based encoding, but it has some serious limitations including restricting the search space to a small part of the feasible set. We introduce a probabilistic tree-based representation scheme (PTbR) that is far superior compared to the priority-based encoding. Our extensive experimental investigations show the advantage of our encoding compared to previous methods for a variety of cost functions. More... »

PAGES

69-81

References to SciGraph publications

Book

TITLE

Parallel Problem Solving from Nature – PPSN XV

ISBN

978-3-319-99252-5
978-3-319-99253-2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-99253-2_6

DOI

http://dx.doi.org/10.1007/978-3-319-99253-2_6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106294853


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "RMIT University", 
          "id": "https://www.grid.ac/institutes/grid.1017.7", 
          "name": [
            "School of Science, RMIT University, Melbourne, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ghasemishabankareh", 
        "givenName": "Behrooz", 
        "id": "sg:person.010307360107.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010307360107.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "RMIT University", 
          "id": "https://www.grid.ac/institutes/grid.1017.7", 
          "name": [
            "School of Science, RMIT University, Melbourne, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ozlen", 
        "givenName": "Melih", 
        "id": "sg:person.01151511254.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151511254.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Adelaide", 
          "id": "https://www.grid.ac/institutes/grid.1010.0", 
          "name": [
            "School of Computer Science, The University of Adelaide, Adelaide, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Neumann", 
        "givenName": "Frank", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "RMIT University", 
          "id": "https://www.grid.ac/institutes/grid.1017.7", 
          "name": [
            "School of Science, RMIT University, Melbourne, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Xiaodong", 
        "id": "sg:person.010004731721.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010004731721.09"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.eswa.2012.01.125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002338164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10556780902753221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008190994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asoc.2012.11.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010852624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.swevo.2011.02.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011052808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-84800-181-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013736326", 
          "https://doi.org/10.1007/978-1-84800-181-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1013736326", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asoc.2016.10.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018706123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sorms.2012.08.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018764310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1021091110342", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018792106", 
          "https://doi.org/10.1023/a:1021091110342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.epsr.2016.08.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042957525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cie.2016.03.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045848654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/net.20167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050899373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/140978296", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062872551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/ijoc.3.4.307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064707386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3846/16484142.2013.815134", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071467287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3846/transport.2010.39", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071471165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tre.2017.11.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100078243"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-08-22", 
    "datePublishedReg": "2018-08-22", 
    "description": "Network flow optimisation has many real-world applications. The minimum cost flow problem (MCFP) is one of the most common network flow problems. Mathematical programming methods often assume the linearity and convexity of the underlying cost function, which is not realistic in many real-world situations. Solving large-sized MCFPs with nonlinear non-convex cost functions poses a much harder problem. In this paper, we propose a new representation scheme for solving non-convex MCFPs using genetic algorithms (GAs). The most common representation scheme for solving the MCFP in the literature using a GA is priority-based encoding, but it has some serious limitations including restricting the search space to a small part of the feasible set. We introduce a probabilistic tree-based representation scheme (PTbR) that is far superior compared to the priority-based encoding. Our extensive experimental investigations show the advantage of our encoding compared to previous methods for a variety of cost functions.", 
    "editor": [
      {
        "familyName": "Auger", 
        "givenName": "Anne", 
        "type": "Person"
      }, 
      {
        "familyName": "Fonseca", 
        "givenName": "Carlos M.", 
        "type": "Person"
      }, 
      {
        "familyName": "Louren\u00e7o", 
        "givenName": "Nuno", 
        "type": "Person"
      }, 
      {
        "familyName": "Machado", 
        "givenName": "Penousal", 
        "type": "Person"
      }, 
      {
        "familyName": "Paquete", 
        "givenName": "Lu\u00eds", 
        "type": "Person"
      }, 
      {
        "familyName": "Whitley", 
        "givenName": "Darrell", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-99253-2_6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-99252-5", 
        "978-3-319-99253-2"
      ], 
      "name": "Parallel Problem Solving from Nature \u2013 PPSN XV", 
      "type": "Book"
    }, 
    "name": "A Probabilistic Tree-Based Representation for Non-convex Minimum Cost Flow Problems", 
    "pagination": "69-81", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-99253-2_6"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7f86128838b61edb43a7e03a95c1387ae456f24423bfa1889566817a1cfb88d0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106294853"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-99253-2_6", 
      "https://app.dimensions.ai/details/publication/pub.1106294853"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T04:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000325_0000000325/records_100783_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-319-99253-2_6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-99253-2_6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-99253-2_6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-99253-2_6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-99253-2_6'


 

This table displays all metadata directly associated to this object as RDF triples.

165 TRIPLES      23 PREDICATES      43 URIs      19 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-99253-2_6 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author N109c0480519547f58bd24c03068b70ed
4 schema:citation sg:pub.10.1007/978-1-84800-181-7
5 sg:pub.10.1023/a:1021091110342
6 https://app.dimensions.ai/details/publication/pub.1013736326
7 https://doi.org/10.1002/net.20167
8 https://doi.org/10.1016/j.asoc.2012.11.016
9 https://doi.org/10.1016/j.asoc.2016.10.022
10 https://doi.org/10.1016/j.cie.2016.03.010
11 https://doi.org/10.1016/j.epsr.2016.08.026
12 https://doi.org/10.1016/j.eswa.2012.01.125
13 https://doi.org/10.1016/j.sorms.2012.08.001
14 https://doi.org/10.1016/j.swevo.2011.02.002
15 https://doi.org/10.1016/j.tre.2017.11.002
16 https://doi.org/10.1080/10556780902753221
17 https://doi.org/10.1137/140978296
18 https://doi.org/10.1287/ijoc.3.4.307
19 https://doi.org/10.3846/16484142.2013.815134
20 https://doi.org/10.3846/transport.2010.39
21 schema:datePublished 2018-08-22
22 schema:datePublishedReg 2018-08-22
23 schema:description Network flow optimisation has many real-world applications. The minimum cost flow problem (MCFP) is one of the most common network flow problems. Mathematical programming methods often assume the linearity and convexity of the underlying cost function, which is not realistic in many real-world situations. Solving large-sized MCFPs with nonlinear non-convex cost functions poses a much harder problem. In this paper, we propose a new representation scheme for solving non-convex MCFPs using genetic algorithms (GAs). The most common representation scheme for solving the MCFP in the literature using a GA is priority-based encoding, but it has some serious limitations including restricting the search space to a small part of the feasible set. We introduce a probabilistic tree-based representation scheme (PTbR) that is far superior compared to the priority-based encoding. Our extensive experimental investigations show the advantage of our encoding compared to previous methods for a variety of cost functions.
24 schema:editor N505af50205544e53bc690b2da52222f7
25 schema:genre chapter
26 schema:inLanguage en
27 schema:isAccessibleForFree false
28 schema:isPartOf N3ed799ebb50f458e9258e225a5440ffb
29 schema:name A Probabilistic Tree-Based Representation for Non-convex Minimum Cost Flow Problems
30 schema:pagination 69-81
31 schema:productId N0a4f84eccded4319b0593ede45e55186
32 N0a7cf20449f4447fa3245e374b338e23
33 N3f450fec77c94de1ad6372feae4f99c1
34 schema:publisher Nc734e153117445ed91cf9201c98e5a37
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106294853
36 https://doi.org/10.1007/978-3-319-99253-2_6
37 schema:sdDatePublished 2019-04-16T04:59
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher Nbc0e8dc2b4814d4286fceea2827d6890
40 schema:url https://link.springer.com/10.1007%2F978-3-319-99253-2_6
41 sgo:license sg:explorer/license/
42 sgo:sdDataset chapters
43 rdf:type schema:Chapter
44 N0a4f84eccded4319b0593ede45e55186 schema:name readcube_id
45 schema:value 7f86128838b61edb43a7e03a95c1387ae456f24423bfa1889566817a1cfb88d0
46 rdf:type schema:PropertyValue
47 N0a7cf20449f4447fa3245e374b338e23 schema:name dimensions_id
48 schema:value pub.1106294853
49 rdf:type schema:PropertyValue
50 N109c0480519547f58bd24c03068b70ed rdf:first sg:person.010307360107.44
51 rdf:rest Nfc016716c5fb4799826ea6d7ad5b6b4f
52 N125aeba590b84771a17bf5efdba2c589 schema:familyName Whitley
53 schema:givenName Darrell
54 rdf:type schema:Person
55 N3a6d2feecc124d80a820364ae22a969b rdf:first sg:person.010004731721.09
56 rdf:rest rdf:nil
57 N3ed799ebb50f458e9258e225a5440ffb schema:isbn 978-3-319-99252-5
58 978-3-319-99253-2
59 schema:name Parallel Problem Solving from Nature – PPSN XV
60 rdf:type schema:Book
61 N3f450fec77c94de1ad6372feae4f99c1 schema:name doi
62 schema:value 10.1007/978-3-319-99253-2_6
63 rdf:type schema:PropertyValue
64 N505af50205544e53bc690b2da52222f7 rdf:first Nb5bb10f4c3c04722a5c12adac134d684
65 rdf:rest N7e258f2c57b9444b8eecf65c69f99824
66 N51179fd63902481fb8504e5fe820d1c1 schema:familyName Fonseca
67 schema:givenName Carlos M.
68 rdf:type schema:Person
69 N7a66c30377814a229c80abc568240784 rdf:first Nb8e62de4e1d04b05b92200daf60e7e81
70 rdf:rest Ndf518235aa4342bcaf962479361544e4
71 N7ac206210684428f95d5074343e39d1a rdf:first N125aeba590b84771a17bf5efdba2c589
72 rdf:rest rdf:nil
73 N7e258f2c57b9444b8eecf65c69f99824 rdf:first N51179fd63902481fb8504e5fe820d1c1
74 rdf:rest N7a66c30377814a229c80abc568240784
75 N89ab575522c6453c97ca05c4433673a0 schema:familyName Paquete
76 schema:givenName Luís
77 rdf:type schema:Person
78 Na1444a95b7a649f8a8233755cca32b03 schema:affiliation https://www.grid.ac/institutes/grid.1010.0
79 schema:familyName Neumann
80 schema:givenName Frank
81 rdf:type schema:Person
82 Naf675013ccc74210b8e2a3074aeeedef rdf:first Na1444a95b7a649f8a8233755cca32b03
83 rdf:rest N3a6d2feecc124d80a820364ae22a969b
84 Nb5bb10f4c3c04722a5c12adac134d684 schema:familyName Auger
85 schema:givenName Anne
86 rdf:type schema:Person
87 Nb8e62de4e1d04b05b92200daf60e7e81 schema:familyName Lourenço
88 schema:givenName Nuno
89 rdf:type schema:Person
90 Nbc0e8dc2b4814d4286fceea2827d6890 schema:name Springer Nature - SN SciGraph project
91 rdf:type schema:Organization
92 Nc734e153117445ed91cf9201c98e5a37 schema:location Cham
93 schema:name Springer International Publishing
94 rdf:type schema:Organisation
95 Nd9609eef21024558b65ba52eebf2fafc schema:familyName Machado
96 schema:givenName Penousal
97 rdf:type schema:Person
98 Ndf518235aa4342bcaf962479361544e4 rdf:first Nd9609eef21024558b65ba52eebf2fafc
99 rdf:rest Nf3df072b1c6546b28859794571edce1e
100 Nf3df072b1c6546b28859794571edce1e rdf:first N89ab575522c6453c97ca05c4433673a0
101 rdf:rest N7ac206210684428f95d5074343e39d1a
102 Nfc016716c5fb4799826ea6d7ad5b6b4f rdf:first sg:person.01151511254.56
103 rdf:rest Naf675013ccc74210b8e2a3074aeeedef
104 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
105 schema:name Mathematical Sciences
106 rdf:type schema:DefinedTerm
107 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
108 schema:name Applied Mathematics
109 rdf:type schema:DefinedTerm
110 sg:person.010004731721.09 schema:affiliation https://www.grid.ac/institutes/grid.1017.7
111 schema:familyName Li
112 schema:givenName Xiaodong
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010004731721.09
114 rdf:type schema:Person
115 sg:person.010307360107.44 schema:affiliation https://www.grid.ac/institutes/grid.1017.7
116 schema:familyName Ghasemishabankareh
117 schema:givenName Behrooz
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010307360107.44
119 rdf:type schema:Person
120 sg:person.01151511254.56 schema:affiliation https://www.grid.ac/institutes/grid.1017.7
121 schema:familyName Ozlen
122 schema:givenName Melih
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151511254.56
124 rdf:type schema:Person
125 sg:pub.10.1007/978-1-84800-181-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013736326
126 https://doi.org/10.1007/978-1-84800-181-7
127 rdf:type schema:CreativeWork
128 sg:pub.10.1023/a:1021091110342 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018792106
129 https://doi.org/10.1023/a:1021091110342
130 rdf:type schema:CreativeWork
131 https://app.dimensions.ai/details/publication/pub.1013736326 schema:CreativeWork
132 https://doi.org/10.1002/net.20167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050899373
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.asoc.2012.11.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010852624
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.asoc.2016.10.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018706123
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.cie.2016.03.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045848654
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.epsr.2016.08.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042957525
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.eswa.2012.01.125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002338164
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.sorms.2012.08.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018764310
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.swevo.2011.02.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011052808
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.tre.2017.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100078243
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1080/10556780902753221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008190994
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1137/140978296 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062872551
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1287/ijoc.3.4.307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064707386
155 rdf:type schema:CreativeWork
156 https://doi.org/10.3846/16484142.2013.815134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071467287
157 rdf:type schema:CreativeWork
158 https://doi.org/10.3846/transport.2010.39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071471165
159 rdf:type schema:CreativeWork
160 https://www.grid.ac/institutes/grid.1010.0 schema:alternateName University of Adelaide
161 schema:name School of Computer Science, The University of Adelaide, Adelaide, Australia
162 rdf:type schema:Organization
163 https://www.grid.ac/institutes/grid.1017.7 schema:alternateName RMIT University
164 schema:name School of Science, RMIT University, Melbourne, Australia
165 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...