A Probabilistic Tree-Based Representation for Non-convex Minimum Cost Flow Problems View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018-08-22

AUTHORS

Behrooz Ghasemishabankareh , Melih Ozlen , Frank Neumann , Xiaodong Li

ABSTRACT

Network flow optimisation has many real-world applications. The minimum cost flow problem (MCFP) is one of the most common network flow problems. Mathematical programming methods often assume the linearity and convexity of the underlying cost function, which is not realistic in many real-world situations. Solving large-sized MCFPs with nonlinear non-convex cost functions poses a much harder problem. In this paper, we propose a new representation scheme for solving non-convex MCFPs using genetic algorithms (GAs). The most common representation scheme for solving the MCFP in the literature using a GA is priority-based encoding, but it has some serious limitations including restricting the search space to a small part of the feasible set. We introduce a probabilistic tree-based representation scheme (PTbR) that is far superior compared to the priority-based encoding. Our extensive experimental investigations show the advantage of our encoding compared to previous methods for a variety of cost functions. More... »

PAGES

69-81

References to SciGraph publications

Book

TITLE

Parallel Problem Solving from Nature – PPSN XV

ISBN

978-3-319-99252-5
978-3-319-99253-2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-99253-2_6

DOI

http://dx.doi.org/10.1007/978-3-319-99253-2_6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106294853


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "RMIT University", 
          "id": "https://www.grid.ac/institutes/grid.1017.7", 
          "name": [
            "School of Science, RMIT University, Melbourne, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ghasemishabankareh", 
        "givenName": "Behrooz", 
        "id": "sg:person.010307360107.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010307360107.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "RMIT University", 
          "id": "https://www.grid.ac/institutes/grid.1017.7", 
          "name": [
            "School of Science, RMIT University, Melbourne, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ozlen", 
        "givenName": "Melih", 
        "id": "sg:person.01151511254.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151511254.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Adelaide", 
          "id": "https://www.grid.ac/institutes/grid.1010.0", 
          "name": [
            "School of Computer Science, The University of Adelaide, Adelaide, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Neumann", 
        "givenName": "Frank", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "RMIT University", 
          "id": "https://www.grid.ac/institutes/grid.1017.7", 
          "name": [
            "School of Science, RMIT University, Melbourne, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Xiaodong", 
        "id": "sg:person.010004731721.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010004731721.09"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.eswa.2012.01.125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002338164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10556780902753221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008190994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asoc.2012.11.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010852624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.swevo.2011.02.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011052808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-84800-181-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013736326", 
          "https://doi.org/10.1007/978-1-84800-181-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1013736326", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asoc.2016.10.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018706123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sorms.2012.08.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018764310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1021091110342", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018792106", 
          "https://doi.org/10.1023/a:1021091110342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.epsr.2016.08.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042957525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cie.2016.03.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045848654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/net.20167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050899373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/140978296", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062872551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/ijoc.3.4.307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064707386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3846/16484142.2013.815134", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071467287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3846/transport.2010.39", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071471165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tre.2017.11.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100078243"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-08-22", 
    "datePublishedReg": "2018-08-22", 
    "description": "Network flow optimisation has many real-world applications. The minimum cost flow problem (MCFP) is one of the most common network flow problems. Mathematical programming methods often assume the linearity and convexity of the underlying cost function, which is not realistic in many real-world situations. Solving large-sized MCFPs with nonlinear non-convex cost functions poses a much harder problem. In this paper, we propose a new representation scheme for solving non-convex MCFPs using genetic algorithms (GAs). The most common representation scheme for solving the MCFP in the literature using a GA is priority-based encoding, but it has some serious limitations including restricting the search space to a small part of the feasible set. We introduce a probabilistic tree-based representation scheme (PTbR) that is far superior compared to the priority-based encoding. Our extensive experimental investigations show the advantage of our encoding compared to previous methods for a variety of cost functions.", 
    "editor": [
      {
        "familyName": "Auger", 
        "givenName": "Anne", 
        "type": "Person"
      }, 
      {
        "familyName": "Fonseca", 
        "givenName": "Carlos M.", 
        "type": "Person"
      }, 
      {
        "familyName": "Louren\u00e7o", 
        "givenName": "Nuno", 
        "type": "Person"
      }, 
      {
        "familyName": "Machado", 
        "givenName": "Penousal", 
        "type": "Person"
      }, 
      {
        "familyName": "Paquete", 
        "givenName": "Lu\u00eds", 
        "type": "Person"
      }, 
      {
        "familyName": "Whitley", 
        "givenName": "Darrell", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-99253-2_6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-99252-5", 
        "978-3-319-99253-2"
      ], 
      "name": "Parallel Problem Solving from Nature \u2013 PPSN XV", 
      "type": "Book"
    }, 
    "name": "A Probabilistic Tree-Based Representation for Non-convex Minimum Cost Flow Problems", 
    "pagination": "69-81", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-99253-2_6"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7f86128838b61edb43a7e03a95c1387ae456f24423bfa1889566817a1cfb88d0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106294853"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-99253-2_6", 
      "https://app.dimensions.ai/details/publication/pub.1106294853"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T04:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000325_0000000325/records_100783_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-319-99253-2_6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-99253-2_6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-99253-2_6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-99253-2_6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-99253-2_6'


 

This table displays all metadata directly associated to this object as RDF triples.

165 TRIPLES      23 PREDICATES      43 URIs      19 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-99253-2_6 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author Nf154b7f519b84484b23b04e77f89c97d
4 schema:citation sg:pub.10.1007/978-1-84800-181-7
5 sg:pub.10.1023/a:1021091110342
6 https://app.dimensions.ai/details/publication/pub.1013736326
7 https://doi.org/10.1002/net.20167
8 https://doi.org/10.1016/j.asoc.2012.11.016
9 https://doi.org/10.1016/j.asoc.2016.10.022
10 https://doi.org/10.1016/j.cie.2016.03.010
11 https://doi.org/10.1016/j.epsr.2016.08.026
12 https://doi.org/10.1016/j.eswa.2012.01.125
13 https://doi.org/10.1016/j.sorms.2012.08.001
14 https://doi.org/10.1016/j.swevo.2011.02.002
15 https://doi.org/10.1016/j.tre.2017.11.002
16 https://doi.org/10.1080/10556780902753221
17 https://doi.org/10.1137/140978296
18 https://doi.org/10.1287/ijoc.3.4.307
19 https://doi.org/10.3846/16484142.2013.815134
20 https://doi.org/10.3846/transport.2010.39
21 schema:datePublished 2018-08-22
22 schema:datePublishedReg 2018-08-22
23 schema:description Network flow optimisation has many real-world applications. The minimum cost flow problem (MCFP) is one of the most common network flow problems. Mathematical programming methods often assume the linearity and convexity of the underlying cost function, which is not realistic in many real-world situations. Solving large-sized MCFPs with nonlinear non-convex cost functions poses a much harder problem. In this paper, we propose a new representation scheme for solving non-convex MCFPs using genetic algorithms (GAs). The most common representation scheme for solving the MCFP in the literature using a GA is priority-based encoding, but it has some serious limitations including restricting the search space to a small part of the feasible set. We introduce a probabilistic tree-based representation scheme (PTbR) that is far superior compared to the priority-based encoding. Our extensive experimental investigations show the advantage of our encoding compared to previous methods for a variety of cost functions.
24 schema:editor N7b4aaaeaba704cdfa674da60b8c754e2
25 schema:genre chapter
26 schema:inLanguage en
27 schema:isAccessibleForFree false
28 schema:isPartOf Nb7a1b1adc0784d9da1441f3796ed7289
29 schema:name A Probabilistic Tree-Based Representation for Non-convex Minimum Cost Flow Problems
30 schema:pagination 69-81
31 schema:productId N0ab9661e6f4a4e4f9e00cab285bcdc82
32 N6b87b9f355334a99b6892557ac56d81f
33 Nc9e4040adeee47ff880ac47212fbb63a
34 schema:publisher Ncfae80114b82407183dbc4af534f3a36
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106294853
36 https://doi.org/10.1007/978-3-319-99253-2_6
37 schema:sdDatePublished 2019-04-16T04:59
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher N05cc70057bbc4027947ccf7b699db19d
40 schema:url https://link.springer.com/10.1007%2F978-3-319-99253-2_6
41 sgo:license sg:explorer/license/
42 sgo:sdDataset chapters
43 rdf:type schema:Chapter
44 N05cc70057bbc4027947ccf7b699db19d schema:name Springer Nature - SN SciGraph project
45 rdf:type schema:Organization
46 N0ab9661e6f4a4e4f9e00cab285bcdc82 schema:name dimensions_id
47 schema:value pub.1106294853
48 rdf:type schema:PropertyValue
49 N10134017f17b469cb6f66434dbb97bba rdf:first sg:person.01151511254.56
50 rdf:rest N15b3e190f20e4bf3a6827a56139864e3
51 N15b3e190f20e4bf3a6827a56139864e3 rdf:first Nfd1c4da5ba2e40f4bbd47761c8d5ed48
52 rdf:rest N81e268e4cc0845e9a97672fe12445fbe
53 N6112b448aec4448b8bb14027eb8231e0 schema:familyName Fonseca
54 schema:givenName Carlos M.
55 rdf:type schema:Person
56 N672b7c3604b14a09bcae4c3ae9770558 schema:familyName Auger
57 schema:givenName Anne
58 rdf:type schema:Person
59 N684247214e9041eba1a4c2faaa0886f1 rdf:first Nf42d5d7c19994df882077b8e8cf97f11
60 rdf:rest rdf:nil
61 N6b87b9f355334a99b6892557ac56d81f schema:name readcube_id
62 schema:value 7f86128838b61edb43a7e03a95c1387ae456f24423bfa1889566817a1cfb88d0
63 rdf:type schema:PropertyValue
64 N7a3219d1e43d4ef88acd621b73d15ffd rdf:first Nc1e8b0d86b5b4139924e84ffe314d2b8
65 rdf:rest N7d0092a202f04e079f59c65c4eabb38e
66 N7af17958836f47afaa12ac874c466872 schema:familyName Paquete
67 schema:givenName Luís
68 rdf:type schema:Person
69 N7b4aaaeaba704cdfa674da60b8c754e2 rdf:first N672b7c3604b14a09bcae4c3ae9770558
70 rdf:rest Nfda1cc581b4344c093ca97405ee206f5
71 N7d0092a202f04e079f59c65c4eabb38e rdf:first N7af17958836f47afaa12ac874c466872
72 rdf:rest N684247214e9041eba1a4c2faaa0886f1
73 N81e268e4cc0845e9a97672fe12445fbe rdf:first sg:person.010004731721.09
74 rdf:rest rdf:nil
75 N899124ea2533473297469c39057b7af9 rdf:first N941cd52844634680ae153c1d6ada8b8e
76 rdf:rest N7a3219d1e43d4ef88acd621b73d15ffd
77 N941cd52844634680ae153c1d6ada8b8e schema:familyName Lourenço
78 schema:givenName Nuno
79 rdf:type schema:Person
80 Nb7a1b1adc0784d9da1441f3796ed7289 schema:isbn 978-3-319-99252-5
81 978-3-319-99253-2
82 schema:name Parallel Problem Solving from Nature – PPSN XV
83 rdf:type schema:Book
84 Nc1e8b0d86b5b4139924e84ffe314d2b8 schema:familyName Machado
85 schema:givenName Penousal
86 rdf:type schema:Person
87 Nc9e4040adeee47ff880ac47212fbb63a schema:name doi
88 schema:value 10.1007/978-3-319-99253-2_6
89 rdf:type schema:PropertyValue
90 Ncfae80114b82407183dbc4af534f3a36 schema:location Cham
91 schema:name Springer International Publishing
92 rdf:type schema:Organisation
93 Nf154b7f519b84484b23b04e77f89c97d rdf:first sg:person.010307360107.44
94 rdf:rest N10134017f17b469cb6f66434dbb97bba
95 Nf42d5d7c19994df882077b8e8cf97f11 schema:familyName Whitley
96 schema:givenName Darrell
97 rdf:type schema:Person
98 Nfd1c4da5ba2e40f4bbd47761c8d5ed48 schema:affiliation https://www.grid.ac/institutes/grid.1010.0
99 schema:familyName Neumann
100 schema:givenName Frank
101 rdf:type schema:Person
102 Nfda1cc581b4344c093ca97405ee206f5 rdf:first N6112b448aec4448b8bb14027eb8231e0
103 rdf:rest N899124ea2533473297469c39057b7af9
104 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
105 schema:name Mathematical Sciences
106 rdf:type schema:DefinedTerm
107 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
108 schema:name Applied Mathematics
109 rdf:type schema:DefinedTerm
110 sg:person.010004731721.09 schema:affiliation https://www.grid.ac/institutes/grid.1017.7
111 schema:familyName Li
112 schema:givenName Xiaodong
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010004731721.09
114 rdf:type schema:Person
115 sg:person.010307360107.44 schema:affiliation https://www.grid.ac/institutes/grid.1017.7
116 schema:familyName Ghasemishabankareh
117 schema:givenName Behrooz
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010307360107.44
119 rdf:type schema:Person
120 sg:person.01151511254.56 schema:affiliation https://www.grid.ac/institutes/grid.1017.7
121 schema:familyName Ozlen
122 schema:givenName Melih
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151511254.56
124 rdf:type schema:Person
125 sg:pub.10.1007/978-1-84800-181-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013736326
126 https://doi.org/10.1007/978-1-84800-181-7
127 rdf:type schema:CreativeWork
128 sg:pub.10.1023/a:1021091110342 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018792106
129 https://doi.org/10.1023/a:1021091110342
130 rdf:type schema:CreativeWork
131 https://app.dimensions.ai/details/publication/pub.1013736326 schema:CreativeWork
132 https://doi.org/10.1002/net.20167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050899373
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.asoc.2012.11.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010852624
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.asoc.2016.10.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018706123
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.cie.2016.03.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045848654
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.epsr.2016.08.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042957525
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.eswa.2012.01.125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002338164
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.sorms.2012.08.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018764310
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.swevo.2011.02.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011052808
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.tre.2017.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100078243
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1080/10556780902753221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008190994
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1137/140978296 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062872551
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1287/ijoc.3.4.307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064707386
155 rdf:type schema:CreativeWork
156 https://doi.org/10.3846/16484142.2013.815134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071467287
157 rdf:type schema:CreativeWork
158 https://doi.org/10.3846/transport.2010.39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071471165
159 rdf:type schema:CreativeWork
160 https://www.grid.ac/institutes/grid.1010.0 schema:alternateName University of Adelaide
161 schema:name School of Computer Science, The University of Adelaide, Adelaide, Australia
162 rdf:type schema:Organization
163 https://www.grid.ac/institutes/grid.1017.7 schema:alternateName RMIT University
164 schema:name School of Science, RMIT University, Melbourne, Australia
165 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...