A Probabilistic Tree-Based Representation for Non-convex Minimum Cost Flow Problems View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018-08-22

AUTHORS

Behrooz Ghasemishabankareh , Melih Ozlen , Frank Neumann , Xiaodong Li

ABSTRACT

Network flow optimisation has many real-world applications. The minimum cost flow problem (MCFP) is one of the most common network flow problems. Mathematical programming methods often assume the linearity and convexity of the underlying cost function, which is not realistic in many real-world situations. Solving large-sized MCFPs with nonlinear non-convex cost functions poses a much harder problem. In this paper, we propose a new representation scheme for solving non-convex MCFPs using genetic algorithms (GAs). The most common representation scheme for solving the MCFP in the literature using a GA is priority-based encoding, but it has some serious limitations including restricting the search space to a small part of the feasible set. We introduce a probabilistic tree-based representation scheme (PTbR) that is far superior compared to the priority-based encoding. Our extensive experimental investigations show the advantage of our encoding compared to previous methods for a variety of cost functions. More... »

PAGES

69-81

References to SciGraph publications

Book

TITLE

Parallel Problem Solving from Nature – PPSN XV

ISBN

978-3-319-99252-5
978-3-319-99253-2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-99253-2_6

DOI

http://dx.doi.org/10.1007/978-3-319-99253-2_6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106294853


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "RMIT University", 
          "id": "https://www.grid.ac/institutes/grid.1017.7", 
          "name": [
            "School of Science, RMIT University, Melbourne, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ghasemishabankareh", 
        "givenName": "Behrooz", 
        "id": "sg:person.010307360107.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010307360107.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "RMIT University", 
          "id": "https://www.grid.ac/institutes/grid.1017.7", 
          "name": [
            "School of Science, RMIT University, Melbourne, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ozlen", 
        "givenName": "Melih", 
        "id": "sg:person.01151511254.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151511254.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Adelaide", 
          "id": "https://www.grid.ac/institutes/grid.1010.0", 
          "name": [
            "School of Computer Science, The University of Adelaide, Adelaide, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Neumann", 
        "givenName": "Frank", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "RMIT University", 
          "id": "https://www.grid.ac/institutes/grid.1017.7", 
          "name": [
            "School of Science, RMIT University, Melbourne, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Xiaodong", 
        "id": "sg:person.010004731721.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010004731721.09"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.eswa.2012.01.125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002338164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10556780902753221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008190994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asoc.2012.11.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010852624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.swevo.2011.02.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011052808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-84800-181-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013736326", 
          "https://doi.org/10.1007/978-1-84800-181-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1013736326", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asoc.2016.10.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018706123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sorms.2012.08.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018764310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1021091110342", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018792106", 
          "https://doi.org/10.1023/a:1021091110342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.epsr.2016.08.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042957525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cie.2016.03.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045848654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/net.20167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050899373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/140978296", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062872551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/ijoc.3.4.307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064707386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3846/16484142.2013.815134", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071467287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3846/transport.2010.39", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071471165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tre.2017.11.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100078243"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-08-22", 
    "datePublishedReg": "2018-08-22", 
    "description": "Network flow optimisation has many real-world applications. The minimum cost flow problem (MCFP) is one of the most common network flow problems. Mathematical programming methods often assume the linearity and convexity of the underlying cost function, which is not realistic in many real-world situations. Solving large-sized MCFPs with nonlinear non-convex cost functions poses a much harder problem. In this paper, we propose a new representation scheme for solving non-convex MCFPs using genetic algorithms (GAs). The most common representation scheme for solving the MCFP in the literature using a GA is priority-based encoding, but it has some serious limitations including restricting the search space to a small part of the feasible set. We introduce a probabilistic tree-based representation scheme (PTbR) that is far superior compared to the priority-based encoding. Our extensive experimental investigations show the advantage of our encoding compared to previous methods for a variety of cost functions.", 
    "editor": [
      {
        "familyName": "Auger", 
        "givenName": "Anne", 
        "type": "Person"
      }, 
      {
        "familyName": "Fonseca", 
        "givenName": "Carlos M.", 
        "type": "Person"
      }, 
      {
        "familyName": "Louren\u00e7o", 
        "givenName": "Nuno", 
        "type": "Person"
      }, 
      {
        "familyName": "Machado", 
        "givenName": "Penousal", 
        "type": "Person"
      }, 
      {
        "familyName": "Paquete", 
        "givenName": "Lu\u00eds", 
        "type": "Person"
      }, 
      {
        "familyName": "Whitley", 
        "givenName": "Darrell", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-99253-2_6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-99252-5", 
        "978-3-319-99253-2"
      ], 
      "name": "Parallel Problem Solving from Nature \u2013 PPSN XV", 
      "type": "Book"
    }, 
    "name": "A Probabilistic Tree-Based Representation for Non-convex Minimum Cost Flow Problems", 
    "pagination": "69-81", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-99253-2_6"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7f86128838b61edb43a7e03a95c1387ae456f24423bfa1889566817a1cfb88d0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106294853"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-99253-2_6", 
      "https://app.dimensions.ai/details/publication/pub.1106294853"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T04:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000325_0000000325/records_100783_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-319-99253-2_6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-99253-2_6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-99253-2_6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-99253-2_6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-99253-2_6'


 

This table displays all metadata directly associated to this object as RDF triples.

165 TRIPLES      23 PREDICATES      43 URIs      19 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-99253-2_6 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author N1d0888e606d240c8bd7193015b7f3ab1
4 schema:citation sg:pub.10.1007/978-1-84800-181-7
5 sg:pub.10.1023/a:1021091110342
6 https://app.dimensions.ai/details/publication/pub.1013736326
7 https://doi.org/10.1002/net.20167
8 https://doi.org/10.1016/j.asoc.2012.11.016
9 https://doi.org/10.1016/j.asoc.2016.10.022
10 https://doi.org/10.1016/j.cie.2016.03.010
11 https://doi.org/10.1016/j.epsr.2016.08.026
12 https://doi.org/10.1016/j.eswa.2012.01.125
13 https://doi.org/10.1016/j.sorms.2012.08.001
14 https://doi.org/10.1016/j.swevo.2011.02.002
15 https://doi.org/10.1016/j.tre.2017.11.002
16 https://doi.org/10.1080/10556780902753221
17 https://doi.org/10.1137/140978296
18 https://doi.org/10.1287/ijoc.3.4.307
19 https://doi.org/10.3846/16484142.2013.815134
20 https://doi.org/10.3846/transport.2010.39
21 schema:datePublished 2018-08-22
22 schema:datePublishedReg 2018-08-22
23 schema:description Network flow optimisation has many real-world applications. The minimum cost flow problem (MCFP) is one of the most common network flow problems. Mathematical programming methods often assume the linearity and convexity of the underlying cost function, which is not realistic in many real-world situations. Solving large-sized MCFPs with nonlinear non-convex cost functions poses a much harder problem. In this paper, we propose a new representation scheme for solving non-convex MCFPs using genetic algorithms (GAs). The most common representation scheme for solving the MCFP in the literature using a GA is priority-based encoding, but it has some serious limitations including restricting the search space to a small part of the feasible set. We introduce a probabilistic tree-based representation scheme (PTbR) that is far superior compared to the priority-based encoding. Our extensive experimental investigations show the advantage of our encoding compared to previous methods for a variety of cost functions.
24 schema:editor Nced37242435b441aa619584071e8d9d0
25 schema:genre chapter
26 schema:inLanguage en
27 schema:isAccessibleForFree false
28 schema:isPartOf Nbbd27b4f4c6e499e968cda88afa407a9
29 schema:name A Probabilistic Tree-Based Representation for Non-convex Minimum Cost Flow Problems
30 schema:pagination 69-81
31 schema:productId N0f0b372d6b4e4380bc708885bafbec85
32 N3ed6bf1b1f71466bb9b2a8bef284c54c
33 N5fd63cd51e9a42dfaf670f03dbccb975
34 schema:publisher N84c9d616112a4730bc8517bce0a8ed7e
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106294853
36 https://doi.org/10.1007/978-3-319-99253-2_6
37 schema:sdDatePublished 2019-04-16T04:59
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher N3489ffc180c34b78947f9ece14938795
40 schema:url https://link.springer.com/10.1007%2F978-3-319-99253-2_6
41 sgo:license sg:explorer/license/
42 sgo:sdDataset chapters
43 rdf:type schema:Chapter
44 N0545201f37c0491b8f4fe6ab2d9bc2c5 schema:familyName Machado
45 schema:givenName Penousal
46 rdf:type schema:Person
47 N0f0b372d6b4e4380bc708885bafbec85 schema:name readcube_id
48 schema:value 7f86128838b61edb43a7e03a95c1387ae456f24423bfa1889566817a1cfb88d0
49 rdf:type schema:PropertyValue
50 N116b81bbb6084d2ba83dedf3b9998663 schema:familyName Auger
51 schema:givenName Anne
52 rdf:type schema:Person
53 N1d0888e606d240c8bd7193015b7f3ab1 rdf:first sg:person.010307360107.44
54 rdf:rest N355f2507b55c4da38345a116f9d957ad
55 N26dc858b725f4bd097436810a5fa45ab rdf:first Ne7432c24b90a47cf885efa58b535a001
56 rdf:rest rdf:nil
57 N276f367251dc442e85862a2f1a8ed41b schema:familyName Paquete
58 schema:givenName Luís
59 rdf:type schema:Person
60 N3489ffc180c34b78947f9ece14938795 schema:name Springer Nature - SN SciGraph project
61 rdf:type schema:Organization
62 N355f2507b55c4da38345a116f9d957ad rdf:first sg:person.01151511254.56
63 rdf:rest Nf0b78ff8e0374b449f63bd9b9fca7456
64 N3b6b24cc18574b879d2fbe997bbd7a7e rdf:first Nf6d558a3a6f24a1e873ebd490711567e
65 rdf:rest Nbb34ba775a8f402e88270f3b7c74fc89
66 N3ed6bf1b1f71466bb9b2a8bef284c54c schema:name doi
67 schema:value 10.1007/978-3-319-99253-2_6
68 rdf:type schema:PropertyValue
69 N45c2a4b8d6174f9585647a6348d43725 rdf:first N276f367251dc442e85862a2f1a8ed41b
70 rdf:rest N26dc858b725f4bd097436810a5fa45ab
71 N5fd63cd51e9a42dfaf670f03dbccb975 schema:name dimensions_id
72 schema:value pub.1106294853
73 rdf:type schema:PropertyValue
74 N84c9d616112a4730bc8517bce0a8ed7e schema:location Cham
75 schema:name Springer International Publishing
76 rdf:type schema:Organisation
77 Nbb34ba775a8f402e88270f3b7c74fc89 rdf:first N0545201f37c0491b8f4fe6ab2d9bc2c5
78 rdf:rest N45c2a4b8d6174f9585647a6348d43725
79 Nbbd27b4f4c6e499e968cda88afa407a9 schema:isbn 978-3-319-99252-5
80 978-3-319-99253-2
81 schema:name Parallel Problem Solving from Nature – PPSN XV
82 rdf:type schema:Book
83 Nbe3005d3f2694f53be682980ebd9013e schema:familyName Fonseca
84 schema:givenName Carlos M.
85 rdf:type schema:Person
86 Nced37242435b441aa619584071e8d9d0 rdf:first N116b81bbb6084d2ba83dedf3b9998663
87 rdf:rest Ne6adf591df2842909ba85942ed9b5caa
88 Ne6adf591df2842909ba85942ed9b5caa rdf:first Nbe3005d3f2694f53be682980ebd9013e
89 rdf:rest N3b6b24cc18574b879d2fbe997bbd7a7e
90 Ne7432c24b90a47cf885efa58b535a001 schema:familyName Whitley
91 schema:givenName Darrell
92 rdf:type schema:Person
93 Ne7b89790a3cf40f4bb35a7bff19b498f schema:affiliation https://www.grid.ac/institutes/grid.1010.0
94 schema:familyName Neumann
95 schema:givenName Frank
96 rdf:type schema:Person
97 Nf0b78ff8e0374b449f63bd9b9fca7456 rdf:first Ne7b89790a3cf40f4bb35a7bff19b498f
98 rdf:rest Nf19fb0247ec64f1f982290e3b54e132f
99 Nf19fb0247ec64f1f982290e3b54e132f rdf:first sg:person.010004731721.09
100 rdf:rest rdf:nil
101 Nf6d558a3a6f24a1e873ebd490711567e schema:familyName Lourenço
102 schema:givenName Nuno
103 rdf:type schema:Person
104 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
105 schema:name Mathematical Sciences
106 rdf:type schema:DefinedTerm
107 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
108 schema:name Applied Mathematics
109 rdf:type schema:DefinedTerm
110 sg:person.010004731721.09 schema:affiliation https://www.grid.ac/institutes/grid.1017.7
111 schema:familyName Li
112 schema:givenName Xiaodong
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010004731721.09
114 rdf:type schema:Person
115 sg:person.010307360107.44 schema:affiliation https://www.grid.ac/institutes/grid.1017.7
116 schema:familyName Ghasemishabankareh
117 schema:givenName Behrooz
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010307360107.44
119 rdf:type schema:Person
120 sg:person.01151511254.56 schema:affiliation https://www.grid.ac/institutes/grid.1017.7
121 schema:familyName Ozlen
122 schema:givenName Melih
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151511254.56
124 rdf:type schema:Person
125 sg:pub.10.1007/978-1-84800-181-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013736326
126 https://doi.org/10.1007/978-1-84800-181-7
127 rdf:type schema:CreativeWork
128 sg:pub.10.1023/a:1021091110342 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018792106
129 https://doi.org/10.1023/a:1021091110342
130 rdf:type schema:CreativeWork
131 https://app.dimensions.ai/details/publication/pub.1013736326 schema:CreativeWork
132 https://doi.org/10.1002/net.20167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050899373
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.asoc.2012.11.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010852624
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.asoc.2016.10.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018706123
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.cie.2016.03.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045848654
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.epsr.2016.08.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042957525
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.eswa.2012.01.125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002338164
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.sorms.2012.08.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018764310
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.swevo.2011.02.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011052808
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.tre.2017.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100078243
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1080/10556780902753221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008190994
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1137/140978296 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062872551
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1287/ijoc.3.4.307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064707386
155 rdf:type schema:CreativeWork
156 https://doi.org/10.3846/16484142.2013.815134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071467287
157 rdf:type schema:CreativeWork
158 https://doi.org/10.3846/transport.2010.39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071471165
159 rdf:type schema:CreativeWork
160 https://www.grid.ac/institutes/grid.1010.0 schema:alternateName University of Adelaide
161 schema:name School of Computer Science, The University of Adelaide, Adelaide, Australia
162 rdf:type schema:Organization
163 https://www.grid.ac/institutes/grid.1017.7 schema:alternateName RMIT University
164 schema:name School of Science, RMIT University, Melbourne, Australia
165 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...