Use of Reference Point Sets in a Decomposition-Based Multi-Objective Evolutionary Algorithm View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018-08-22

AUTHORS

Edgar Manoatl Lopez , Carlos A. Coello Coello

ABSTRACT

In recent years, decomposition-based multi-objective evolutionary algorithms (MOEAs) have gained increasing popularity. However, these MOEAs depend on the consistency between the Pareto front shape and the distribution of the reference weight vectors. In this paper, we propose a decomposition-based MOEA, which uses the modified Euclidean distance (d+) as a scalar aggregation function. The proposed approach adopts a novel method for approximating the reference set, based on an hypercube-based method, in order to adapt the reference set for leading the evolutionary process. Our preliminary results indicate that our proposed approach is able to obtain solutions of a similar quality to those obtained by state-of-the-art MOEAs such as MOMBI-II, NSGA-III, RVEA and MOEA/DD in several MOPs, and is able to outperform them in problems with complicated Pareto fronts. More... »

PAGES

372-383

References to SciGraph publications

Book

TITLE

Parallel Problem Solving from Nature – PPSN XV

ISBN

978-3-319-99252-5
978-3-319-99253-2

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-99253-2_30

DOI

http://dx.doi.org/10.1007/978-3-319-99253-2_30

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106294838


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Instituto Polit\u00e9cnico Nacional", 
          "id": "https://www.grid.ac/institutes/grid.418275.d", 
          "name": [
            "Departamento de Computaci\u00f3n, CINVESTAV-IPN (Evolutionary Computation Group), 07300, M\u00e9xico D.F., Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lopez", 
        "givenName": "Edgar Manoatl", 
        "id": "sg:person.014266672624.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014266672624.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Instituto Polit\u00e9cnico Nacional", 
          "id": "https://www.grid.ac/institutes/grid.418275.d", 
          "name": [
            "Departamento de Computaci\u00f3n, CINVESTAV-IPN (Evolutionary Computation Group), 07300, M\u00e9xico D.F., Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Coello", 
        "givenName": "Carlos A. Coello", 
        "id": "sg:person.012160505340.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012160505340.13"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ejor.2006.08.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014117674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-15892-1_8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018388761", 
          "https://doi.org/10.1007/978-3-319-15892-1_8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/1-84628-137-7_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028475054", 
          "https://doi.org/10.1007/1-84628-137-7_6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-24694-7_71", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037293804", 
          "https://doi.org/10.1007/978-3-540-24694-7_71"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-24694-7_71", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037293804", 
          "https://doi.org/10.1007/978-3-540-24694-7_71"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/4235.996017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061172126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tevc.2005.861417", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061604731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tevc.2007.892759", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061604790"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tevc.2013.2281535", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061605171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tevc.2014.2373386", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061605238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tevc.2016.2519378", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061605297"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40747-017-0039-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084040691", 
          "https://doi.org/10.1007/s40747-017-0039-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40747-017-0039-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084040691", 
          "https://doi.org/10.1007/s40747-017-0039-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cec.2008.4631121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093335247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/gefs.2008.4484566", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093434323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cec.2016.7743898", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095586320"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-08-22", 
    "datePublishedReg": "2018-08-22", 
    "description": "In recent years, decomposition-based multi-objective evolutionary algorithms (MOEAs) have gained increasing popularity. However, these MOEAs depend on the consistency between the Pareto front shape and the distribution of the reference weight vectors. In this paper, we propose a decomposition-based MOEA, which uses the modified Euclidean distance (d+) as a scalar aggregation function. The proposed approach adopts a novel method for approximating the reference set, based on an hypercube-based method, in order to adapt the reference set for leading the evolutionary process. Our preliminary results indicate that our proposed approach is able to obtain solutions of a similar quality to those obtained by state-of-the-art MOEAs such as MOMBI-II, NSGA-III, RVEA and MOEA/DD in several MOPs, and is able to outperform them in problems with complicated Pareto fronts.", 
    "editor": [
      {
        "familyName": "Auger", 
        "givenName": "Anne", 
        "type": "Person"
      }, 
      {
        "familyName": "Fonseca", 
        "givenName": "Carlos M.", 
        "type": "Person"
      }, 
      {
        "familyName": "Louren\u00e7o", 
        "givenName": "Nuno", 
        "type": "Person"
      }, 
      {
        "familyName": "Machado", 
        "givenName": "Penousal", 
        "type": "Person"
      }, 
      {
        "familyName": "Paquete", 
        "givenName": "Lu\u00eds", 
        "type": "Person"
      }, 
      {
        "familyName": "Whitley", 
        "givenName": "Darrell", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-99253-2_30", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-99252-5", 
        "978-3-319-99253-2"
      ], 
      "name": "Parallel Problem Solving from Nature \u2013 PPSN XV", 
      "type": "Book"
    }, 
    "name": "Use of Reference Point Sets in a Decomposition-Based Multi-Objective Evolutionary Algorithm", 
    "pagination": "372-383", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-99253-2_30"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "33da37ac79a5b272b5ab0286bce23e7b9f022a88c80679d443562bc18051cace"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106294838"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-99253-2_30", 
      "https://app.dimensions.ai/details/publication/pub.1106294838"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T05:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000325_0000000325/records_100791_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-319-99253-2_30"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-99253-2_30'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-99253-2_30'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-99253-2_30'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-99253-2_30'


 

This table displays all metadata directly associated to this object as RDF triples.

143 TRIPLES      23 PREDICATES      40 URIs      19 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-99253-2_30 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nce531b661ce94d7aa73becf186231a0e
4 schema:citation sg:pub.10.1007/1-84628-137-7_6
5 sg:pub.10.1007/978-3-319-15892-1_8
6 sg:pub.10.1007/978-3-540-24694-7_71
7 sg:pub.10.1007/s40747-017-0039-7
8 https://doi.org/10.1016/j.ejor.2006.08.008
9 https://doi.org/10.1109/4235.996017
10 https://doi.org/10.1109/cec.2008.4631121
11 https://doi.org/10.1109/cec.2016.7743898
12 https://doi.org/10.1109/gefs.2008.4484566
13 https://doi.org/10.1109/tevc.2005.861417
14 https://doi.org/10.1109/tevc.2007.892759
15 https://doi.org/10.1109/tevc.2013.2281535
16 https://doi.org/10.1109/tevc.2014.2373386
17 https://doi.org/10.1109/tevc.2016.2519378
18 schema:datePublished 2018-08-22
19 schema:datePublishedReg 2018-08-22
20 schema:description In recent years, decomposition-based multi-objective evolutionary algorithms (MOEAs) have gained increasing popularity. However, these MOEAs depend on the consistency between the Pareto front shape and the distribution of the reference weight vectors. In this paper, we propose a decomposition-based MOEA, which uses the modified Euclidean distance (d+) as a scalar aggregation function. The proposed approach adopts a novel method for approximating the reference set, based on an hypercube-based method, in order to adapt the reference set for leading the evolutionary process. Our preliminary results indicate that our proposed approach is able to obtain solutions of a similar quality to those obtained by state-of-the-art MOEAs such as MOMBI-II, NSGA-III, RVEA and MOEA/DD in several MOPs, and is able to outperform them in problems with complicated Pareto fronts.
21 schema:editor N166af5a4151c498f968596613ad5e3a8
22 schema:genre chapter
23 schema:inLanguage en
24 schema:isAccessibleForFree false
25 schema:isPartOf N99904dcc08be4eeeb42cc1aa95ecf680
26 schema:name Use of Reference Point Sets in a Decomposition-Based Multi-Objective Evolutionary Algorithm
27 schema:pagination 372-383
28 schema:productId N1ba45b4eeedd4df6aabcfa7458dc43c2
29 N3043d05265d44b0990368de5491ae66b
30 Nf6ec7d2774bf4e3197b8b8fd543e1cc7
31 schema:publisher Nd36186acf011406d88f9dfbdcea673df
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106294838
33 https://doi.org/10.1007/978-3-319-99253-2_30
34 schema:sdDatePublished 2019-04-16T05:00
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher N139a5dbe388a41719567b279e8f51795
37 schema:url https://link.springer.com/10.1007%2F978-3-319-99253-2_30
38 sgo:license sg:explorer/license/
39 sgo:sdDataset chapters
40 rdf:type schema:Chapter
41 N139a5dbe388a41719567b279e8f51795 schema:name Springer Nature - SN SciGraph project
42 rdf:type schema:Organization
43 N166af5a4151c498f968596613ad5e3a8 rdf:first N17db8ba12c2244e6ada6c4de6ec2fe20
44 rdf:rest Nb840b2d0cf904aab88e274f71c8ccd53
45 N17db8ba12c2244e6ada6c4de6ec2fe20 schema:familyName Auger
46 schema:givenName Anne
47 rdf:type schema:Person
48 N1ba45b4eeedd4df6aabcfa7458dc43c2 schema:name readcube_id
49 schema:value 33da37ac79a5b272b5ab0286bce23e7b9f022a88c80679d443562bc18051cace
50 rdf:type schema:PropertyValue
51 N3043d05265d44b0990368de5491ae66b schema:name doi
52 schema:value 10.1007/978-3-319-99253-2_30
53 rdf:type schema:PropertyValue
54 N511711e49f6d4eb5ac121af575eb5663 schema:familyName Fonseca
55 schema:givenName Carlos M.
56 rdf:type schema:Person
57 N5845934619fa4965aaffad283c072499 rdf:first N7bf55671d23b490cb48de67a24699a43
58 rdf:rest Nee9c089ceef74291a798f56452d55bbd
59 N64bf5cd6ae59417fa6f1d17448c7d47d rdf:first Nbed8529f6c264e36940d47ecc2c35077
60 rdf:rest rdf:nil
61 N74f907fcc5de4959b402df185cbfa5c7 schema:familyName Paquete
62 schema:givenName Luís
63 rdf:type schema:Person
64 N7bf55671d23b490cb48de67a24699a43 schema:familyName Machado
65 schema:givenName Penousal
66 rdf:type schema:Person
67 N99904dcc08be4eeeb42cc1aa95ecf680 schema:isbn 978-3-319-99252-5
68 978-3-319-99253-2
69 schema:name Parallel Problem Solving from Nature – PPSN XV
70 rdf:type schema:Book
71 Nb0964a8b2c8b4b68aadb07e336670243 schema:familyName Lourenço
72 schema:givenName Nuno
73 rdf:type schema:Person
74 Nb840b2d0cf904aab88e274f71c8ccd53 rdf:first N511711e49f6d4eb5ac121af575eb5663
75 rdf:rest Nd6db5a454583415ea3d23530f1c5cc1a
76 Nbed8529f6c264e36940d47ecc2c35077 schema:familyName Whitley
77 schema:givenName Darrell
78 rdf:type schema:Person
79 Nce531b661ce94d7aa73becf186231a0e rdf:first sg:person.014266672624.05
80 rdf:rest Nd818d0107d0b4f80b4441e7587a0f4fe
81 Nd36186acf011406d88f9dfbdcea673df schema:location Cham
82 schema:name Springer International Publishing
83 rdf:type schema:Organisation
84 Nd6db5a454583415ea3d23530f1c5cc1a rdf:first Nb0964a8b2c8b4b68aadb07e336670243
85 rdf:rest N5845934619fa4965aaffad283c072499
86 Nd818d0107d0b4f80b4441e7587a0f4fe rdf:first sg:person.012160505340.13
87 rdf:rest rdf:nil
88 Nee9c089ceef74291a798f56452d55bbd rdf:first N74f907fcc5de4959b402df185cbfa5c7
89 rdf:rest N64bf5cd6ae59417fa6f1d17448c7d47d
90 Nf6ec7d2774bf4e3197b8b8fd543e1cc7 schema:name dimensions_id
91 schema:value pub.1106294838
92 rdf:type schema:PropertyValue
93 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
94 schema:name Information and Computing Sciences
95 rdf:type schema:DefinedTerm
96 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
97 schema:name Artificial Intelligence and Image Processing
98 rdf:type schema:DefinedTerm
99 sg:person.012160505340.13 schema:affiliation https://www.grid.ac/institutes/grid.418275.d
100 schema:familyName Coello
101 schema:givenName Carlos A. Coello
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012160505340.13
103 rdf:type schema:Person
104 sg:person.014266672624.05 schema:affiliation https://www.grid.ac/institutes/grid.418275.d
105 schema:familyName Lopez
106 schema:givenName Edgar Manoatl
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014266672624.05
108 rdf:type schema:Person
109 sg:pub.10.1007/1-84628-137-7_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028475054
110 https://doi.org/10.1007/1-84628-137-7_6
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/978-3-319-15892-1_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018388761
113 https://doi.org/10.1007/978-3-319-15892-1_8
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/978-3-540-24694-7_71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037293804
116 https://doi.org/10.1007/978-3-540-24694-7_71
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/s40747-017-0039-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084040691
119 https://doi.org/10.1007/s40747-017-0039-7
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.ejor.2006.08.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014117674
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1109/4235.996017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061172126
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1109/cec.2008.4631121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093335247
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1109/cec.2016.7743898 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095586320
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1109/gefs.2008.4484566 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093434323
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1109/tevc.2005.861417 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061604731
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1109/tevc.2007.892759 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061604790
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1109/tevc.2013.2281535 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061605171
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1109/tevc.2014.2373386 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061605238
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1109/tevc.2016.2519378 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061605297
140 rdf:type schema:CreativeWork
141 https://www.grid.ac/institutes/grid.418275.d schema:alternateName Instituto Politécnico Nacional
142 schema:name Departamento de Computación, CINVESTAV-IPN (Evolutionary Computation Group), 07300, México D.F., Mexico
143 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...