Towards a More General Many-objective Evolutionary Optimizer View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018-08-22

AUTHORS

Jesús Guillermo Falcón-Cardona , Carlos A. Coello Coello

ABSTRACT

Recently, it has been shown that the current Many-Objective Evolutionary Algorithms (MaOEAs) are overspecialized in solving certain benchmark problems. This overspecialization is due to a high correlation between the Pareto fronts of the test problems with the convex weight vectors commonly used by MaOEAs. The main consequence of such overspecialization is the inability of these MaOEAs to solve the minus versions of well-known benchmarks (e.g., the DTLZ-1 test suite). In furtherance of avoiding this issue, we propose a novel steady-state MaOEA that does not require weight vectors and uses a density estimator based on the IGD+ indicator. Moreover, a fast method to calculate the IGD+ contributions is integrated in order to reduce the computational cost of the proposed approach, which is called IGD+-MaOEA. Our proposed approach is compared with NSGA-III, MOEA/D, IGD+-EMOA (the previous ones employ convex weight vectors) and SMS-EMOA on the test suites DTLZ and DTLZ-1, using the hypervolume indicator. Our experimental results show that IGD+-MaOEA is a more general optimizer than MaOEAs that need a set of convex weight vectors and it is competitive and less computational expensive than SMS-EMOA. More... »

PAGES

335-346

References to SciGraph publications

Book

TITLE

Parallel Problem Solving from Nature – PPSN XV

ISBN

978-3-319-99252-5
978-3-319-99253-2

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-99253-2_27

DOI

http://dx.doi.org/10.1007/978-3-319-99253-2_27

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106294834


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Instituto Polit\u00e9cnico Nacional", 
          "id": "https://www.grid.ac/institutes/grid.418275.d", 
          "name": [
            "Computer Science Department, CINVESTAV-IPN, Av. IPN No. 2508, Col. San Pedro Zacatenco, 07300, M\u00e9xico D.F., Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Falc\u00f3n-Cardona", 
        "givenName": "Jes\u00fas Guillermo", 
        "id": "sg:person.010660524345.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010660524345.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Instituto Polit\u00e9cnico Nacional", 
          "id": "https://www.grid.ac/institutes/grid.418275.d", 
          "name": [
            "Computer Science Department, CINVESTAV-IPN, Av. IPN No. 2508, Col. San Pedro Zacatenco, 07300, M\u00e9xico D.F., Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Coello", 
        "givenName": "Carlos A. Coello", 
        "id": "sg:person.012160505340.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012160505340.13"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ejor.2006.08.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014117674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-15892-1_8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018388761", 
          "https://doi.org/10.1007/978-3-319-15892-1_8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-36970-8_37", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019183589", 
          "https://doi.org/10.1007/3-540-36970-8_37"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-36797-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029460773", 
          "https://doi.org/10.1007/978-0-387-36797-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1029460773", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/4235.996017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061172126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tevc.2007.892759", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061604790"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tevc.2013.2281535", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061605171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tevc.2016.2587749", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061605317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cec.2008.4631121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093335247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/gefs.2008.4484566", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093434323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cec.2016.7743898", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095586320"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-08-22", 
    "datePublishedReg": "2018-08-22", 
    "description": "Recently, it has been shown that the current Many-Objective Evolutionary Algorithms (MaOEAs) are overspecialized in solving certain benchmark problems. This overspecialization is due to a high correlation between the Pareto fronts of the test problems with the convex weight vectors commonly used by MaOEAs. The main consequence of such overspecialization is the inability of these MaOEAs to solve the minus versions of well-known benchmarks (e.g., the DTLZ-1 test suite). In furtherance of avoiding this issue, we propose a novel steady-state MaOEA that does not require weight vectors and uses a density estimator based on the IGD+ indicator. Moreover, a fast method to calculate the IGD+ contributions is integrated in order to reduce the computational cost of the proposed approach, which is called IGD+-MaOEA. Our proposed approach is compared with NSGA-III, MOEA/D, IGD+-EMOA (the previous ones employ convex weight vectors) and SMS-EMOA on the test suites DTLZ and DTLZ-1, using the hypervolume indicator. Our experimental results show that IGD+-MaOEA is a more general optimizer than MaOEAs that need a set of convex weight vectors and it is competitive and less computational expensive than SMS-EMOA.", 
    "editor": [
      {
        "familyName": "Auger", 
        "givenName": "Anne", 
        "type": "Person"
      }, 
      {
        "familyName": "Fonseca", 
        "givenName": "Carlos M.", 
        "type": "Person"
      }, 
      {
        "familyName": "Louren\u00e7o", 
        "givenName": "Nuno", 
        "type": "Person"
      }, 
      {
        "familyName": "Machado", 
        "givenName": "Penousal", 
        "type": "Person"
      }, 
      {
        "familyName": "Paquete", 
        "givenName": "Lu\u00eds", 
        "type": "Person"
      }, 
      {
        "familyName": "Whitley", 
        "givenName": "Darrell", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-99253-2_27", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-99252-5", 
        "978-3-319-99253-2"
      ], 
      "name": "Parallel Problem Solving from Nature \u2013 PPSN XV", 
      "type": "Book"
    }, 
    "name": "Towards a More General Many-objective Evolutionary Optimizer", 
    "pagination": "335-346", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-99253-2_27"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "551cb234a441abf958266e3fce29e248af0d0b8660ba8d3c3c0cc3ed046aa235"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106294834"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-99253-2_27", 
      "https://app.dimensions.ai/details/publication/pub.1106294834"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T04:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000325_0000000325/records_100778_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-319-99253-2_27"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-99253-2_27'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-99253-2_27'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-99253-2_27'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-99253-2_27'


 

This table displays all metadata directly associated to this object as RDF triples.

135 TRIPLES      23 PREDICATES      38 URIs      19 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-99253-2_27 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nb2140552c6894cd0aa1c1e28bb5da7b0
4 schema:citation sg:pub.10.1007/3-540-36970-8_37
5 sg:pub.10.1007/978-0-387-36797-2
6 sg:pub.10.1007/978-3-319-15892-1_8
7 https://app.dimensions.ai/details/publication/pub.1029460773
8 https://doi.org/10.1016/j.ejor.2006.08.008
9 https://doi.org/10.1109/4235.996017
10 https://doi.org/10.1109/cec.2008.4631121
11 https://doi.org/10.1109/cec.2016.7743898
12 https://doi.org/10.1109/gefs.2008.4484566
13 https://doi.org/10.1109/tevc.2007.892759
14 https://doi.org/10.1109/tevc.2013.2281535
15 https://doi.org/10.1109/tevc.2016.2587749
16 schema:datePublished 2018-08-22
17 schema:datePublishedReg 2018-08-22
18 schema:description Recently, it has been shown that the current Many-Objective Evolutionary Algorithms (MaOEAs) are overspecialized in solving certain benchmark problems. This overspecialization is due to a high correlation between the Pareto fronts of the test problems with the convex weight vectors commonly used by MaOEAs. The main consequence of such overspecialization is the inability of these MaOEAs to solve the minus versions of well-known benchmarks (e.g., the DTLZ-1 test suite). In furtherance of avoiding this issue, we propose a novel steady-state MaOEA that does not require weight vectors and uses a density estimator based on the IGD+ indicator. Moreover, a fast method to calculate the IGD+ contributions is integrated in order to reduce the computational cost of the proposed approach, which is called IGD+-MaOEA. Our proposed approach is compared with NSGA-III, MOEA/D, IGD+-EMOA (the previous ones employ convex weight vectors) and SMS-EMOA on the test suites DTLZ and DTLZ-1, using the hypervolume indicator. Our experimental results show that IGD+-MaOEA is a more general optimizer than MaOEAs that need a set of convex weight vectors and it is competitive and less computational expensive than SMS-EMOA.
19 schema:editor N24450dfbf0ae4306afa52c13a70ff7fd
20 schema:genre chapter
21 schema:inLanguage en
22 schema:isAccessibleForFree false
23 schema:isPartOf N9c0a296c7d864750b23444232a03af28
24 schema:name Towards a More General Many-objective Evolutionary Optimizer
25 schema:pagination 335-346
26 schema:productId N07d6503ed068458caa82dfc7b6024539
27 Na2af9cbb8b5d4f91bd748e1ae6a3d3ec
28 Nec312eaab45d4a7d866b5a2e4954f6ab
29 schema:publisher N873399f37eb94442b86820108b5aa5c7
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106294834
31 https://doi.org/10.1007/978-3-319-99253-2_27
32 schema:sdDatePublished 2019-04-16T04:59
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher N26146b7f70c2418fba9d4df8122cf0e9
35 schema:url https://link.springer.com/10.1007%2F978-3-319-99253-2_27
36 sgo:license sg:explorer/license/
37 sgo:sdDataset chapters
38 rdf:type schema:Chapter
39 N07d6503ed068458caa82dfc7b6024539 schema:name doi
40 schema:value 10.1007/978-3-319-99253-2_27
41 rdf:type schema:PropertyValue
42 N1f498e8bd3a64b03bf2666aac501c76d rdf:first N32b314fc119a4d77b993fd2230d93f5b
43 rdf:rest N6f87215a3acf4150b094029b0310decc
44 N2060c0e7301c44a79417e407f48f217a schema:familyName Paquete
45 schema:givenName Luís
46 rdf:type schema:Person
47 N24450dfbf0ae4306afa52c13a70ff7fd rdf:first Na92868455961412a9f72e700b7587d30
48 rdf:rest N83d3df9ba78849f387a7463cf8343c47
49 N26146b7f70c2418fba9d4df8122cf0e9 schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 N311d11db30f940bea7c66ce029b93901 schema:familyName Lourenço
52 schema:givenName Nuno
53 rdf:type schema:Person
54 N32b314fc119a4d77b993fd2230d93f5b schema:familyName Machado
55 schema:givenName Penousal
56 rdf:type schema:Person
57 N459acbc6f253407faa02b6f09f34a258 schema:familyName Fonseca
58 schema:givenName Carlos M.
59 rdf:type schema:Person
60 N5dcc5daaeed1476cacbbcd2ebfc595dc rdf:first N8160204986bb496aab3e9929b38e6761
61 rdf:rest rdf:nil
62 N6f87215a3acf4150b094029b0310decc rdf:first N2060c0e7301c44a79417e407f48f217a
63 rdf:rest N5dcc5daaeed1476cacbbcd2ebfc595dc
64 N8160204986bb496aab3e9929b38e6761 schema:familyName Whitley
65 schema:givenName Darrell
66 rdf:type schema:Person
67 N83d3df9ba78849f387a7463cf8343c47 rdf:first N459acbc6f253407faa02b6f09f34a258
68 rdf:rest Na51d6f7f45874c43ad854f5fa1fd5dd6
69 N873399f37eb94442b86820108b5aa5c7 schema:location Cham
70 schema:name Springer International Publishing
71 rdf:type schema:Organisation
72 N9c0a296c7d864750b23444232a03af28 schema:isbn 978-3-319-99252-5
73 978-3-319-99253-2
74 schema:name Parallel Problem Solving from Nature – PPSN XV
75 rdf:type schema:Book
76 Na2af9cbb8b5d4f91bd748e1ae6a3d3ec schema:name readcube_id
77 schema:value 551cb234a441abf958266e3fce29e248af0d0b8660ba8d3c3c0cc3ed046aa235
78 rdf:type schema:PropertyValue
79 Na51d6f7f45874c43ad854f5fa1fd5dd6 rdf:first N311d11db30f940bea7c66ce029b93901
80 rdf:rest N1f498e8bd3a64b03bf2666aac501c76d
81 Na92868455961412a9f72e700b7587d30 schema:familyName Auger
82 schema:givenName Anne
83 rdf:type schema:Person
84 Nb2140552c6894cd0aa1c1e28bb5da7b0 rdf:first sg:person.010660524345.03
85 rdf:rest Nf9585794998e42bc92842f632c085d4c
86 Nec312eaab45d4a7d866b5a2e4954f6ab schema:name dimensions_id
87 schema:value pub.1106294834
88 rdf:type schema:PropertyValue
89 Nf9585794998e42bc92842f632c085d4c rdf:first sg:person.012160505340.13
90 rdf:rest rdf:nil
91 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
92 schema:name Information and Computing Sciences
93 rdf:type schema:DefinedTerm
94 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
95 schema:name Artificial Intelligence and Image Processing
96 rdf:type schema:DefinedTerm
97 sg:person.010660524345.03 schema:affiliation https://www.grid.ac/institutes/grid.418275.d
98 schema:familyName Falcón-Cardona
99 schema:givenName Jesús Guillermo
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010660524345.03
101 rdf:type schema:Person
102 sg:person.012160505340.13 schema:affiliation https://www.grid.ac/institutes/grid.418275.d
103 schema:familyName Coello
104 schema:givenName Carlos A. Coello
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012160505340.13
106 rdf:type schema:Person
107 sg:pub.10.1007/3-540-36970-8_37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019183589
108 https://doi.org/10.1007/3-540-36970-8_37
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/978-0-387-36797-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029460773
111 https://doi.org/10.1007/978-0-387-36797-2
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/978-3-319-15892-1_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018388761
114 https://doi.org/10.1007/978-3-319-15892-1_8
115 rdf:type schema:CreativeWork
116 https://app.dimensions.ai/details/publication/pub.1029460773 schema:CreativeWork
117 https://doi.org/10.1016/j.ejor.2006.08.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014117674
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1109/4235.996017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061172126
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1109/cec.2008.4631121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093335247
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1109/cec.2016.7743898 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095586320
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1109/gefs.2008.4484566 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093434323
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1109/tevc.2007.892759 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061604790
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1109/tevc.2013.2281535 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061605171
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1109/tevc.2016.2587749 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061605317
132 rdf:type schema:CreativeWork
133 https://www.grid.ac/institutes/grid.418275.d schema:alternateName Instituto Politécnico Nacional
134 schema:name Computer Science Department, CINVESTAV-IPN, Av. IPN No. 2508, Col. San Pedro Zacatenco, 07300, México D.F., Mexico
135 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...