Ultrasound Transducer Quality Control and Performance Evaluation Using Image Metrics View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2019

AUTHORS

Amr A. Sharawy , Kamel K. Mohammed , Mohamed Aouf , Mohammed A.-M. Salem

ABSTRACT

This paper aims to two main goals, first goal is to achieve the characterization of quality control of ultrasound scanners based on the potential image metrics. On the other hand, the most effective goal is how to classify ultrasound scanners based on image metrics to evaluate performance of ultrasound transducer. The authors utilize the metrics to give information about the spatial arrangement of the gray levels in the specific interest region. The execution of ultrasound images metric based on a set of 19 metrics (i.e. contrast, gradient and Laplacian). This set reflects quality control of ultrasound scanners. The wok of this paper based on the best 6 metrics from 19 metrics which extracted from linear discriminative analysis (LDA). The classification methods used for minimum numbers of metrics are fused using support vector machine (SVM) and the highest classification method is back propagation neural network (BPNN) classifiers to get the main target of paper. Finally, the results show that objective performance evaluation of ultrasound transducer accuracy was 100% by using back propagation neural network classifier. More... »

PAGES

26-39

Book

TITLE

Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2018

ISBN

978-3-319-99009-5
978-3-319-99010-1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-99010-1_3

DOI

http://dx.doi.org/10.1007/978-3-319-99010-1_3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106411527


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Cairo University", 
          "id": "https://www.grid.ac/institutes/grid.7776.1", 
          "name": [
            "Cairo University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sharawy", 
        "givenName": "Amr A.", 
        "id": "sg:person.01000313600.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01000313600.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Al-Azhar University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mohammed", 
        "givenName": "Kamel K.", 
        "id": "sg:person.011520434224.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011520434224.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "HTI"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aouf", 
        "givenName": "Mohamed", 
        "id": "sg:person.010440405767.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010440405767.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "German University in Cairo", 
          "id": "https://www.grid.ac/institutes/grid.187323.c", 
          "name": [
            "Ain Shams University", 
            "German University in Cairo"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Salem", 
        "givenName": "Mohammed A.-M.", 
        "id": "sg:person.014373422232.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014373422232.06"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ultrasmedbio.2011.05.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004849242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0301-5629(96)00205-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009853456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2014/708279", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010723614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejmp.2016.01.279", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012387466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0301-5629(01)00473-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012637738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1166/jmihi.2016.1583", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014359044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.597505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014382799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0041-624x(02)00383-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014489285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejmp.2016.01.469", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017327228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ultrasmedbio.2004.12.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022171577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cyto.990160402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022347458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cyto.990160402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022347458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1522-2586(200002)11:2<174::aid-jmri15>3.0.co;2-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026827158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1590/1517-3151.0644", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027940459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ultrasmedbio.2006.09.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029995286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.598404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033888189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.inffus.2013.05.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037427993"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11547-010-0533-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038190320", 
          "https://doi.org/10.1007/s11547-010-0533-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11547-010-0533-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038190320", 
          "https://doi.org/10.1007/s11547-010-0533-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2818.1988.tb04620.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050323456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/8756479302239545", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053804973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/8756479302239545", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053804973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1055/s-0033-1335141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057281326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/42.192685", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061170069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.137.6.1239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069311304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2528/pierb13052805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070908106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1055/s-0032-1322649", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085948495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3703266", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098539753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511750885", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109394399"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019", 
    "datePublishedReg": "2019-01-01", 
    "description": "This paper aims to two main goals, first goal is to achieve the characterization of quality control of ultrasound scanners based on the potential image metrics. On the other hand, the most effective goal is how to classify ultrasound scanners based on image metrics to evaluate performance of ultrasound transducer. The authors utilize the metrics to give information about the spatial arrangement of the gray levels in the specific interest region. The execution of ultrasound images metric based on a set of 19 metrics (i.e. contrast, gradient and Laplacian). This set reflects quality control of ultrasound scanners. The wok of this paper based on the best 6 metrics from 19 metrics which extracted from linear discriminative analysis (LDA). The classification methods used for minimum numbers of metrics are fused using support vector machine (SVM) and the highest classification method is back propagation neural network (BPNN) classifiers to get the main target of paper. Finally, the results show that objective performance evaluation of ultrasound transducer accuracy was 100% by using back propagation neural network classifier.", 
    "editor": [
      {
        "familyName": "Hassanien", 
        "givenName": "Aboul Ella", 
        "type": "Person"
      }, 
      {
        "familyName": "Tolba", 
        "givenName": "Mohamed F.", 
        "type": "Person"
      }, 
      {
        "familyName": "Shaalan", 
        "givenName": "Khaled", 
        "type": "Person"
      }, 
      {
        "familyName": "Azar", 
        "givenName": "Ahmad Taher", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-99010-1_3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-99009-5", 
        "978-3-319-99010-1"
      ], 
      "name": "Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2018", 
      "type": "Book"
    }, 
    "name": "Ultrasound Transducer Quality Control and Performance Evaluation Using Image Metrics", 
    "pagination": "26-39", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-99010-1_3"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6d9983e1f48429675991ce60fe6d81de83a4d152a8816bd91c8c7ff9f7b5fe13"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106411527"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-99010-1_3", 
      "https://app.dimensions.ai/details/publication/pub.1106411527"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T22:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000605.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-99010-1_3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-99010-1_3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-99010-1_3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-99010-1_3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-99010-1_3'


 

This table displays all metadata directly associated to this object as RDF triples.

188 TRIPLES      23 PREDICATES      53 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-99010-1_3 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N53cf672482a24f2eab0b8316830b1d6b
4 schema:citation sg:pub.10.1007/s11547-010-0533-0
5 https://doi.org/10.1002/(sici)1522-2586(200002)11:2<174::aid-jmri15>3.0.co;2-3
6 https://doi.org/10.1002/cyto.990160402
7 https://doi.org/10.1016/j.ejmp.2016.01.279
8 https://doi.org/10.1016/j.ejmp.2016.01.469
9 https://doi.org/10.1016/j.inffus.2013.05.007
10 https://doi.org/10.1016/j.ultrasmedbio.2004.12.003
11 https://doi.org/10.1016/j.ultrasmedbio.2006.09.006
12 https://doi.org/10.1016/j.ultrasmedbio.2011.05.007
13 https://doi.org/10.1016/s0041-624x(02)00383-9
14 https://doi.org/10.1016/s0301-5629(01)00473-2
15 https://doi.org/10.1016/s0301-5629(96)00205-0
16 https://doi.org/10.1017/cbo9780511750885
17 https://doi.org/10.1055/s-0032-1322649
18 https://doi.org/10.1055/s-0033-1335141
19 https://doi.org/10.1063/1.3703266
20 https://doi.org/10.1109/42.192685
21 https://doi.org/10.1111/j.1365-2818.1988.tb04620.x
22 https://doi.org/10.1118/1.597505
23 https://doi.org/10.1118/1.598404
24 https://doi.org/10.1155/2014/708279
25 https://doi.org/10.1166/jmihi.2016.1583
26 https://doi.org/10.1177/8756479302239545
27 https://doi.org/10.1590/1517-3151.0644
28 https://doi.org/10.2214/ajr.137.6.1239
29 https://doi.org/10.2528/pierb13052805
30 schema:datePublished 2019
31 schema:datePublishedReg 2019-01-01
32 schema:description This paper aims to two main goals, first goal is to achieve the characterization of quality control of ultrasound scanners based on the potential image metrics. On the other hand, the most effective goal is how to classify ultrasound scanners based on image metrics to evaluate performance of ultrasound transducer. The authors utilize the metrics to give information about the spatial arrangement of the gray levels in the specific interest region. The execution of ultrasound images metric based on a set of 19 metrics (i.e. contrast, gradient and Laplacian). This set reflects quality control of ultrasound scanners. The wok of this paper based on the best 6 metrics from 19 metrics which extracted from linear discriminative analysis (LDA). The classification methods used for minimum numbers of metrics are fused using support vector machine (SVM) and the highest classification method is back propagation neural network (BPNN) classifiers to get the main target of paper. Finally, the results show that objective performance evaluation of ultrasound transducer accuracy was 100% by using back propagation neural network classifier.
33 schema:editor Nb15e74632d6f41119c3855f688a3c1e1
34 schema:genre chapter
35 schema:inLanguage en
36 schema:isAccessibleForFree false
37 schema:isPartOf Nae3ba8940aaf4e459f21cd0423b50745
38 schema:name Ultrasound Transducer Quality Control and Performance Evaluation Using Image Metrics
39 schema:pagination 26-39
40 schema:productId N17abb4ac89ab417ea782a29ee3abe94b
41 N3e2ab573192047f194e702aecf234395
42 N88e119b6cd9a48db8b1c0f84a78ee61a
43 schema:publisher Naa52bf66af194038b61f736069287e4c
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106411527
45 https://doi.org/10.1007/978-3-319-99010-1_3
46 schema:sdDatePublished 2019-04-15T22:38
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher N8a61f6e0ceba4274ae1140e020cbedb1
49 schema:url http://link.springer.com/10.1007/978-3-319-99010-1_3
50 sgo:license sg:explorer/license/
51 sgo:sdDataset chapters
52 rdf:type schema:Chapter
53 N07cc8009c0e745c095309881e71eef3c rdf:first sg:person.010440405767.21
54 rdf:rest N28ebeb8ebd694ecfbf6dc5119532627b
55 N17abb4ac89ab417ea782a29ee3abe94b schema:name doi
56 schema:value 10.1007/978-3-319-99010-1_3
57 rdf:type schema:PropertyValue
58 N25df0e0768d64fec9fb9107b0e629250 schema:familyName Hassanien
59 schema:givenName Aboul Ella
60 rdf:type schema:Person
61 N28ebeb8ebd694ecfbf6dc5119532627b rdf:first sg:person.014373422232.06
62 rdf:rest rdf:nil
63 N338c30d1b5f8485e812e05a0294b3ef1 rdf:first N519fbedbcdc244788b347570d5575c19
64 rdf:rest N85760fea904441c3898d589ffe61407a
65 N3e2ab573192047f194e702aecf234395 schema:name dimensions_id
66 schema:value pub.1106411527
67 rdf:type schema:PropertyValue
68 N519fbedbcdc244788b347570d5575c19 schema:familyName Tolba
69 schema:givenName Mohamed F.
70 rdf:type schema:Person
71 N53cf672482a24f2eab0b8316830b1d6b rdf:first sg:person.01000313600.34
72 rdf:rest Ncc8e205204894438a8b0c7387ca15a4b
73 N85760fea904441c3898d589ffe61407a rdf:first Ne23d8d8f91034f6f821ddd4cced5ca5b
74 rdf:rest Nfcabd68416594a04b7731603dd62f576
75 N88e119b6cd9a48db8b1c0f84a78ee61a schema:name readcube_id
76 schema:value 6d9983e1f48429675991ce60fe6d81de83a4d152a8816bd91c8c7ff9f7b5fe13
77 rdf:type schema:PropertyValue
78 N8969f3bc757d46edae11675867edb007 schema:name HTI
79 rdf:type schema:Organization
80 N8a61f6e0ceba4274ae1140e020cbedb1 schema:name Springer Nature - SN SciGraph project
81 rdf:type schema:Organization
82 Naa52bf66af194038b61f736069287e4c schema:location Cham
83 schema:name Springer International Publishing
84 rdf:type schema:Organisation
85 Nae3ba8940aaf4e459f21cd0423b50745 schema:isbn 978-3-319-99009-5
86 978-3-319-99010-1
87 schema:name Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2018
88 rdf:type schema:Book
89 Nb15e74632d6f41119c3855f688a3c1e1 rdf:first N25df0e0768d64fec9fb9107b0e629250
90 rdf:rest N338c30d1b5f8485e812e05a0294b3ef1
91 Nc9842f57e6e144a398c99c4c65b7c5af schema:name Al-Azhar University
92 rdf:type schema:Organization
93 Ncc8e205204894438a8b0c7387ca15a4b rdf:first sg:person.011520434224.21
94 rdf:rest N07cc8009c0e745c095309881e71eef3c
95 Nd2ee051dc0834ffe95c4e60a6ff3a43a schema:familyName Azar
96 schema:givenName Ahmad Taher
97 rdf:type schema:Person
98 Ne23d8d8f91034f6f821ddd4cced5ca5b schema:familyName Shaalan
99 schema:givenName Khaled
100 rdf:type schema:Person
101 Nfcabd68416594a04b7731603dd62f576 rdf:first Nd2ee051dc0834ffe95c4e60a6ff3a43a
102 rdf:rest rdf:nil
103 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
104 schema:name Information and Computing Sciences
105 rdf:type schema:DefinedTerm
106 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
107 schema:name Artificial Intelligence and Image Processing
108 rdf:type schema:DefinedTerm
109 sg:person.01000313600.34 schema:affiliation https://www.grid.ac/institutes/grid.7776.1
110 schema:familyName Sharawy
111 schema:givenName Amr A.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01000313600.34
113 rdf:type schema:Person
114 sg:person.010440405767.21 schema:affiliation N8969f3bc757d46edae11675867edb007
115 schema:familyName Aouf
116 schema:givenName Mohamed
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010440405767.21
118 rdf:type schema:Person
119 sg:person.011520434224.21 schema:affiliation Nc9842f57e6e144a398c99c4c65b7c5af
120 schema:familyName Mohammed
121 schema:givenName Kamel K.
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011520434224.21
123 rdf:type schema:Person
124 sg:person.014373422232.06 schema:affiliation https://www.grid.ac/institutes/grid.187323.c
125 schema:familyName Salem
126 schema:givenName Mohammed A.-M.
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014373422232.06
128 rdf:type schema:Person
129 sg:pub.10.1007/s11547-010-0533-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038190320
130 https://doi.org/10.1007/s11547-010-0533-0
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1002/(sici)1522-2586(200002)11:2<174::aid-jmri15>3.0.co;2-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026827158
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1002/cyto.990160402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022347458
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.ejmp.2016.01.279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012387466
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.ejmp.2016.01.469 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017327228
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.inffus.2013.05.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037427993
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.ultrasmedbio.2004.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022171577
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.ultrasmedbio.2006.09.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029995286
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.ultrasmedbio.2011.05.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004849242
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/s0041-624x(02)00383-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014489285
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/s0301-5629(01)00473-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012637738
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/s0301-5629(96)00205-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009853456
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1017/cbo9780511750885 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109394399
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1055/s-0032-1322649 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085948495
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1055/s-0033-1335141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057281326
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1063/1.3703266 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098539753
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1109/42.192685 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061170069
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1111/j.1365-2818.1988.tb04620.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1050323456
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1118/1.597505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014382799
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1118/1.598404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033888189
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1155/2014/708279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010723614
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1166/jmihi.2016.1583 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014359044
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1177/8756479302239545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053804973
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1590/1517-3151.0644 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027940459
177 rdf:type schema:CreativeWork
178 https://doi.org/10.2214/ajr.137.6.1239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069311304
179 rdf:type schema:CreativeWork
180 https://doi.org/10.2528/pierb13052805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070908106
181 rdf:type schema:CreativeWork
182 https://www.grid.ac/institutes/grid.187323.c schema:alternateName German University in Cairo
183 schema:name Ain Shams University
184 German University in Cairo
185 rdf:type schema:Organization
186 https://www.grid.ac/institutes/grid.7776.1 schema:alternateName Cairo University
187 schema:name Cairo University
188 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...