The Total Earliness/Tardiness Minimization on a Single Machine with Arbitrary Due Dates View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2019

AUTHORS

Michael Z. Zgurovsky , Alexander A. Pavlov

ABSTRACT

We solve a single machine problem of constructing a schedule of tasks with arbitrary due dates on a single machine that minimizes the total earliness/tardiness in relation to their due dates. This problem is solved in three different formulations: (1) the start time of the machine is fixed. In this case the problem is NP-hard; (2) the start time of the machine belongs to a specified time segment. The problem is intractable because there is no exact polynomial algorithm for its solving; (3) the start time of the machine is arbitrary. The problem is intractable because there is no exact polynomial algorithm for its solving. For the first two problems we give PSC-algorithms, each of them contains sufficient signs of a feasible solution optimality and is based on the optimal solution for the single machine problem to minimize the total tardiness of tasks in relation to their various due dates (with equal weights). We show that the PSC-algorithm of its solving is a simplified modification of the PSC-algorithm presented in Chap. 4. For the third problem solving we build an efficient approximation algorithm. More... »

PAGES

219-263

References to SciGraph publications

Book

TITLE

Combinatorial Optimization Problems in Planning and Decision Making

ISBN

978-3-319-98976-1
978-3-319-98977-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-98977-8_5

DOI

http://dx.doi.org/10.1007/978-3-319-98977-8_5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107214734


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Technical University of Ukraine Kiev Polytechnic Institute", 
          "id": "https://www.grid.ac/institutes/grid.440544.5", 
          "name": [
            "National Technical University of Ukraine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zgurovsky", 
        "givenName": "Michael Z.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Technical University of Ukraine Kiev Polytechnic Institute", 
          "id": "https://www.grid.ac/institutes/grid.440544.5", 
          "name": [
            "National Technical University of Ukraine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pavlov", 
        "givenName": "Alexander A.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.cor.2003.08.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007700296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cor.2003.08.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007700296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-6377(82)90022-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008361073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-6377(82)90022-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008361073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-6377(82)90035-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009890908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-6377(82)90035-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009890908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1520-6750(199510)42:7<1109::aid-nav3220420709>3.0.co;2-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011460533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-008-1395-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013977017", 
          "https://doi.org/10.1007/s00170-008-1395-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-008-1395-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013977017", 
          "https://doi.org/10.1007/s00170-008-1395-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10951-008-0093-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016736892", 
          "https://doi.org/10.1007/s10951-008-0093-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0360-8352(02)00181-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018585774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0360-8352(02)00181-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018585774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0377-2217(01)00302-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019168753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0305-0548(94)00073-h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019592279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0377-2217(01)00181-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020257932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1520-6750(199303)40:2<229::aid-nav3220400207>3.0.co;2-r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020369422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1030107668", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-04986-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030107668", 
          "https://doi.org/10.1007/978-3-662-04986-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-04986-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030107668", 
          "https://doi.org/10.1007/978-3-662-04986-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0895-7177(00)00250-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031968857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1520-6750(199302)40:1<85::aid-nav3220400106>3.0.co;2-c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035115817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-5060(08)70742-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036482707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0377-2217(91)90078-a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040865833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0377-2217(91)90078-a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040865833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nav.3800280411", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041775153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cie.2005.01.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048523854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-005-0261-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049282581", 
          "https://doi.org/10.1007/s00170-005-0261-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-005-0261-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049282581", 
          "https://doi.org/10.1007/s00170-005-0261-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0377-2217(96)00133-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052955589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0278-6125(05)80017-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053371583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/ijoc.8.4.402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064707605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/mnsc.35.2.177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064720545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/moor.13.2.330", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064723341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/moor.15.3.483", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064723443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/opre.38.1.22", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064730080"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019", 
    "datePublishedReg": "2019-01-01", 
    "description": "We solve a single machine problem of constructing a schedule of tasks with arbitrary due dates on a single machine that minimizes the total earliness/tardiness in relation to their due dates. This problem is solved in three different formulations: (1) the start time of the machine is fixed. In this case the problem is NP-hard; (2) the start time of the machine belongs to a specified time segment. The problem is intractable because there is no exact polynomial algorithm for its solving; (3) the start time of the machine is arbitrary. The problem is intractable because there is no exact polynomial algorithm for its solving. For the first two problems we give PSC-algorithms, each of them contains sufficient signs of a feasible solution optimality and is based on the optimal solution for the single machine problem to minimize the total tardiness of tasks in relation to their various due dates (with equal weights). We show that the PSC-algorithm of its solving is a simplified modification of the PSC-algorithm presented in Chap. 4. For the third problem solving we build an efficient approximation algorithm.", 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-98977-8_5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-98976-1", 
        "978-3-319-98977-8"
      ], 
      "name": "Combinatorial Optimization Problems in Planning and Decision Making", 
      "type": "Book"
    }, 
    "name": "The Total Earliness/Tardiness Minimization on a Single Machine with Arbitrary Due Dates", 
    "pagination": "219-263", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-98977-8_5"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a0646c6ce9dba42d7744314eccd5254ddc7f5a0015d4f121fa2a009f2364cf3a"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107214734"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-98977-8_5", 
      "https://app.dimensions.ai/details/publication/pub.1107214734"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T22:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000605.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-98977-8_5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-98977-8_5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-98977-8_5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-98977-8_5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-98977-8_5'


 

This table displays all metadata directly associated to this object as RDF triples.

148 TRIPLES      22 PREDICATES      53 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-98977-8_5 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N85c9a935750f47c2910dfe77a03654af
4 schema:citation sg:pub.10.1007/978-3-662-04986-0
5 sg:pub.10.1007/s00170-005-0261-0
6 sg:pub.10.1007/s00170-008-1395-7
7 sg:pub.10.1007/s10951-008-0093-5
8 https://app.dimensions.ai/details/publication/pub.1030107668
9 https://doi.org/10.1002/1520-6750(199302)40:1<85::aid-nav3220400106>3.0.co;2-c
10 https://doi.org/10.1002/1520-6750(199303)40:2<229::aid-nav3220400207>3.0.co;2-r
11 https://doi.org/10.1002/1520-6750(199510)42:7<1109::aid-nav3220420709>3.0.co;2-5
12 https://doi.org/10.1002/nav.3800280411
13 https://doi.org/10.1016/0167-6377(82)90022-0
14 https://doi.org/10.1016/0167-6377(82)90035-9
15 https://doi.org/10.1016/0305-0548(94)00073-h
16 https://doi.org/10.1016/0377-2217(91)90078-a
17 https://doi.org/10.1016/0377-2217(96)00133-6
18 https://doi.org/10.1016/j.cie.2005.01.020
19 https://doi.org/10.1016/j.cor.2003.08.003
20 https://doi.org/10.1016/s0167-5060(08)70742-8
21 https://doi.org/10.1016/s0278-6125(05)80017-2
22 https://doi.org/10.1016/s0360-8352(02)00181-x
23 https://doi.org/10.1016/s0377-2217(01)00181-3
24 https://doi.org/10.1016/s0377-2217(01)00302-2
25 https://doi.org/10.1016/s0895-7177(00)00250-8
26 https://doi.org/10.1287/ijoc.8.4.402
27 https://doi.org/10.1287/mnsc.35.2.177
28 https://doi.org/10.1287/moor.13.2.330
29 https://doi.org/10.1287/moor.15.3.483
30 https://doi.org/10.1287/opre.38.1.22
31 schema:datePublished 2019
32 schema:datePublishedReg 2019-01-01
33 schema:description We solve a single machine problem of constructing a schedule of tasks with arbitrary due dates on a single machine that minimizes the total earliness/tardiness in relation to their due dates. This problem is solved in three different formulations: (1) the start time of the machine is fixed. In this case the problem is NP-hard; (2) the start time of the machine belongs to a specified time segment. The problem is intractable because there is no exact polynomial algorithm for its solving; (3) the start time of the machine is arbitrary. The problem is intractable because there is no exact polynomial algorithm for its solving. For the first two problems we give PSC-algorithms, each of them contains sufficient signs of a feasible solution optimality and is based on the optimal solution for the single machine problem to minimize the total tardiness of tasks in relation to their various due dates (with equal weights). We show that the PSC-algorithm of its solving is a simplified modification of the PSC-algorithm presented in Chap. 4. For the third problem solving we build an efficient approximation algorithm.
34 schema:genre chapter
35 schema:inLanguage en
36 schema:isAccessibleForFree false
37 schema:isPartOf N926d2193ecef4f1bafb0f76273b62ff0
38 schema:name The Total Earliness/Tardiness Minimization on a Single Machine with Arbitrary Due Dates
39 schema:pagination 219-263
40 schema:productId N304f6c52551749beb252dd95221c8f13
41 Nff0c4b215e1a4331b0caac5debb4b343
42 Nff9210012a444e149f80a82ef4358e9a
43 schema:publisher N78f2a60533284cdf93decb5aaf2ac306
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107214734
45 https://doi.org/10.1007/978-3-319-98977-8_5
46 schema:sdDatePublished 2019-04-15T22:38
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher Na5661842566e4b3d857c9b9daec4eea8
49 schema:url http://link.springer.com/10.1007/978-3-319-98977-8_5
50 sgo:license sg:explorer/license/
51 sgo:sdDataset chapters
52 rdf:type schema:Chapter
53 N304f6c52551749beb252dd95221c8f13 schema:name readcube_id
54 schema:value a0646c6ce9dba42d7744314eccd5254ddc7f5a0015d4f121fa2a009f2364cf3a
55 rdf:type schema:PropertyValue
56 N5cf7d12979c646a2a00d36db2e917ce2 schema:affiliation https://www.grid.ac/institutes/grid.440544.5
57 schema:familyName Zgurovsky
58 schema:givenName Michael Z.
59 rdf:type schema:Person
60 N6858d3f089404dc799880b4a2dd71e90 schema:affiliation https://www.grid.ac/institutes/grid.440544.5
61 schema:familyName Pavlov
62 schema:givenName Alexander A.
63 rdf:type schema:Person
64 N78f2a60533284cdf93decb5aaf2ac306 schema:location Cham
65 schema:name Springer International Publishing
66 rdf:type schema:Organisation
67 N85c9a935750f47c2910dfe77a03654af rdf:first N5cf7d12979c646a2a00d36db2e917ce2
68 rdf:rest Nd57a6aa7c75241a19f84c2933bf30433
69 N926d2193ecef4f1bafb0f76273b62ff0 schema:isbn 978-3-319-98976-1
70 978-3-319-98977-8
71 schema:name Combinatorial Optimization Problems in Planning and Decision Making
72 rdf:type schema:Book
73 Na5661842566e4b3d857c9b9daec4eea8 schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 Nd57a6aa7c75241a19f84c2933bf30433 rdf:first N6858d3f089404dc799880b4a2dd71e90
76 rdf:rest rdf:nil
77 Nff0c4b215e1a4331b0caac5debb4b343 schema:name dimensions_id
78 schema:value pub.1107214734
79 rdf:type schema:PropertyValue
80 Nff9210012a444e149f80a82ef4358e9a schema:name doi
81 schema:value 10.1007/978-3-319-98977-8_5
82 rdf:type schema:PropertyValue
83 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
84 schema:name Mathematical Sciences
85 rdf:type schema:DefinedTerm
86 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
87 schema:name Numerical and Computational Mathematics
88 rdf:type schema:DefinedTerm
89 sg:pub.10.1007/978-3-662-04986-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030107668
90 https://doi.org/10.1007/978-3-662-04986-0
91 rdf:type schema:CreativeWork
92 sg:pub.10.1007/s00170-005-0261-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049282581
93 https://doi.org/10.1007/s00170-005-0261-0
94 rdf:type schema:CreativeWork
95 sg:pub.10.1007/s00170-008-1395-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013977017
96 https://doi.org/10.1007/s00170-008-1395-7
97 rdf:type schema:CreativeWork
98 sg:pub.10.1007/s10951-008-0093-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016736892
99 https://doi.org/10.1007/s10951-008-0093-5
100 rdf:type schema:CreativeWork
101 https://app.dimensions.ai/details/publication/pub.1030107668 schema:CreativeWork
102 https://doi.org/10.1002/1520-6750(199302)40:1<85::aid-nav3220400106>3.0.co;2-c schema:sameAs https://app.dimensions.ai/details/publication/pub.1035115817
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1002/1520-6750(199303)40:2<229::aid-nav3220400207>3.0.co;2-r schema:sameAs https://app.dimensions.ai/details/publication/pub.1020369422
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1002/1520-6750(199510)42:7<1109::aid-nav3220420709>3.0.co;2-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011460533
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1002/nav.3800280411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041775153
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/0167-6377(82)90022-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008361073
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/0167-6377(82)90035-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009890908
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/0305-0548(94)00073-h schema:sameAs https://app.dimensions.ai/details/publication/pub.1019592279
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/0377-2217(91)90078-a schema:sameAs https://app.dimensions.ai/details/publication/pub.1040865833
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/0377-2217(96)00133-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052955589
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.cie.2005.01.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048523854
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.cor.2003.08.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007700296
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/s0167-5060(08)70742-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036482707
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/s0278-6125(05)80017-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053371583
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/s0360-8352(02)00181-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1018585774
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/s0377-2217(01)00181-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020257932
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/s0377-2217(01)00302-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019168753
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/s0895-7177(00)00250-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031968857
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1287/ijoc.8.4.402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064707605
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1287/mnsc.35.2.177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064720545
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1287/moor.13.2.330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064723341
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1287/moor.15.3.483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064723443
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1287/opre.38.1.22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064730080
145 rdf:type schema:CreativeWork
146 https://www.grid.ac/institutes/grid.440544.5 schema:alternateName National Technical University of Ukraine Kiev Polytechnic Institute
147 schema:name National Technical University of Ukraine
148 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...