E-Commerce Product Recommendation Using Historical Purchases and Clickstream Data View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018-08-08

AUTHORS

Ying Xiao , C. I. Ezeife

ABSTRACT

In E-commerce, user-item rating matrices for collaborative filtering recommendation systems are usually binary and sparse, showing only whether or not a user has purchased an item previously. Clickstream data containing more customer behavior have been used to improve recommendations by some existing systems referred in this paper as Kim05Rec, Kim11Rec, and Chen13Rec, using decision tree, association rule mining and category-based interest measurements respectively. However, they do not integrate valuable information from historical purchases and the consequential bond information between session-based clicks and purchases. This paper proposes Historical Purchase with Clickstream recommendation system (HPCRec), which normalizes the historical purchase frequency matrix to improve rating quality, and mines the session-based consequential bond between clicks and purchases to generate potential ratings to improve the rating quantity. Experimental results show HPCRec outperforms these existing methods, and is also capable of handling infrequent user cases, whereas other methods can not. More... »

PAGES

70-82

References to SciGraph publications

Book

TITLE

Big Data Analytics and Knowledge Discovery

ISBN

978-3-319-98538-1
978-3-319-98539-8

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-98539-8_6

DOI

http://dx.doi.org/10.1007/978-3-319-98539-8_6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106062443


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Windsor", 
          "id": "https://www.grid.ac/institutes/grid.267455.7", 
          "name": [
            "School of Computer Science, University of Windsor, 401 Sunset Ave, N9B 3P4, Windsor, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xiao", 
        "givenName": "Ying", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Windsor", 
          "id": "https://www.grid.ac/institutes/grid.267455.7", 
          "name": [
            "School of Computer Science, University of Windsor, 401 Sunset Ave, N9B 3P4, Windsor, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ezeife", 
        "givenName": "C. I.", 
        "id": "sg:person.01200460536.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200460536.41"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1509/jmkr.41.3.306.35985", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005293143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1509/jmkr.41.3.306.35985", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005293143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2004.10.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006875728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-29659-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022525812", 
          "https://doi.org/10.1007/978-3-319-29659-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-29659-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022525812", 
          "https://doi.org/10.1007/978-3-319-29659-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.intmar.2008.10.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023201377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2004.04.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030481370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2007.12.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033769058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-85820-3_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036183961", 
          "https://doi.org/10.1007/978-0-387-85820-3_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-85820-3_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036183961", 
          "https://doi.org/10.1007/978-0-387-85820-3_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2011.04.154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036748540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/956750.956815", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041602746"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/mnsc.1040.0153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064714229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9781611972757.76", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088800077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icsssm.2013.6602631", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094662300"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-08-08", 
    "datePublishedReg": "2018-08-08", 
    "description": "In E-commerce, user-item rating matrices for collaborative filtering recommendation systems are usually binary and sparse, showing only whether or not a user has purchased an item previously. Clickstream data containing more customer behavior have been used to improve recommendations by some existing systems referred in this paper as Kim05Rec, Kim11Rec, and Chen13Rec, using decision tree, association rule mining and category-based interest measurements respectively. However, they do not integrate valuable information from historical purchases and the consequential bond information between session-based clicks and purchases. This paper proposes Historical Purchase with Clickstream recommendation system (HPCRec), which normalizes the historical purchase frequency matrix to improve rating quality, and mines the session-based consequential bond between clicks and purchases to generate potential ratings to improve the rating quantity. Experimental results show HPCRec outperforms these existing methods, and is also capable of handling infrequent user cases, whereas other methods can not.", 
    "editor": [
      {
        "familyName": "Ordonez", 
        "givenName": "Carlos", 
        "type": "Person"
      }, 
      {
        "familyName": "Bellatreche", 
        "givenName": "Ladjel", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-98539-8_6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-98538-1", 
        "978-3-319-98539-8"
      ], 
      "name": "Big Data Analytics and Knowledge Discovery", 
      "type": "Book"
    }, 
    "name": "E-Commerce Product Recommendation Using Historical Purchases and Clickstream Data", 
    "pagination": "70-82", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-98539-8_6"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6cc6f3d1cfbb3ca825d01b1419da58a7f35e605ea25d65201a92d7cbb8effa25"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106062443"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-98539-8_6", 
      "https://app.dimensions.ai/details/publication/pub.1106062443"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T05:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000325_0000000325/records_100806_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-319-98539-8_6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-98539-8_6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-98539-8_6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-98539-8_6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-98539-8_6'


 

This table displays all metadata directly associated to this object as RDF triples.

114 TRIPLES      23 PREDICATES      38 URIs      19 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-98539-8_6 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N562e693b3a594eaabf255ab90b6dca95
4 schema:citation sg:pub.10.1007/978-0-387-85820-3_1
5 sg:pub.10.1007/978-3-319-29659-3
6 https://doi.org/10.1016/j.ejor.2004.04.022
7 https://doi.org/10.1016/j.eswa.2004.10.017
8 https://doi.org/10.1016/j.eswa.2007.12.034
9 https://doi.org/10.1016/j.eswa.2011.04.154
10 https://doi.org/10.1016/j.intmar.2008.10.004
11 https://doi.org/10.1109/icsssm.2013.6602631
12 https://doi.org/10.1137/1.9781611972757.76
13 https://doi.org/10.1145/956750.956815
14 https://doi.org/10.1287/mnsc.1040.0153
15 https://doi.org/10.1509/jmkr.41.3.306.35985
16 schema:datePublished 2018-08-08
17 schema:datePublishedReg 2018-08-08
18 schema:description In E-commerce, user-item rating matrices for collaborative filtering recommendation systems are usually binary and sparse, showing only whether or not a user has purchased an item previously. Clickstream data containing more customer behavior have been used to improve recommendations by some existing systems referred in this paper as Kim05Rec, Kim11Rec, and Chen13Rec, using decision tree, association rule mining and category-based interest measurements respectively. However, they do not integrate valuable information from historical purchases and the consequential bond information between session-based clicks and purchases. This paper proposes Historical Purchase with Clickstream recommendation system (HPCRec), which normalizes the historical purchase frequency matrix to improve rating quality, and mines the session-based consequential bond between clicks and purchases to generate potential ratings to improve the rating quantity. Experimental results show HPCRec outperforms these existing methods, and is also capable of handling infrequent user cases, whereas other methods can not.
19 schema:editor Nbdd7a2c189b54a5992994a633189c408
20 schema:genre chapter
21 schema:inLanguage en
22 schema:isAccessibleForFree false
23 schema:isPartOf Ne3542ad02da547cbad80feed3c458207
24 schema:name E-Commerce Product Recommendation Using Historical Purchases and Clickstream Data
25 schema:pagination 70-82
26 schema:productId N033f1f3dfe604058a44c233a0b915cae
27 N934c52137c9a46c4954f46c8fe8460dc
28 Nb3f6554e695a478487713c1734887f68
29 schema:publisher Ne99ec0b8f2c14f10ac50e8f3cb783b7e
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106062443
31 https://doi.org/10.1007/978-3-319-98539-8_6
32 schema:sdDatePublished 2019-04-16T05:01
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher N514265f781b94fabb879cf17a6507724
35 schema:url https://link.springer.com/10.1007%2F978-3-319-98539-8_6
36 sgo:license sg:explorer/license/
37 sgo:sdDataset chapters
38 rdf:type schema:Chapter
39 N033f1f3dfe604058a44c233a0b915cae schema:name doi
40 schema:value 10.1007/978-3-319-98539-8_6
41 rdf:type schema:PropertyValue
42 N22830f1d031946d4892ad93a3d66d6ef schema:familyName Bellatreche
43 schema:givenName Ladjel
44 rdf:type schema:Person
45 N239bf118afaf4223a14614f1a0b89071 rdf:first sg:person.01200460536.41
46 rdf:rest rdf:nil
47 N410228b8494740c78ed48ea3406b794e schema:familyName Ordonez
48 schema:givenName Carlos
49 rdf:type schema:Person
50 N514265f781b94fabb879cf17a6507724 schema:name Springer Nature - SN SciGraph project
51 rdf:type schema:Organization
52 N562e693b3a594eaabf255ab90b6dca95 rdf:first Nf7af406ca42443358021a46491fa5f07
53 rdf:rest N239bf118afaf4223a14614f1a0b89071
54 N934c52137c9a46c4954f46c8fe8460dc schema:name dimensions_id
55 schema:value pub.1106062443
56 rdf:type schema:PropertyValue
57 N94bca068168346d29b1654ff7f37a6f4 rdf:first N22830f1d031946d4892ad93a3d66d6ef
58 rdf:rest rdf:nil
59 Nb3f6554e695a478487713c1734887f68 schema:name readcube_id
60 schema:value 6cc6f3d1cfbb3ca825d01b1419da58a7f35e605ea25d65201a92d7cbb8effa25
61 rdf:type schema:PropertyValue
62 Nbdd7a2c189b54a5992994a633189c408 rdf:first N410228b8494740c78ed48ea3406b794e
63 rdf:rest N94bca068168346d29b1654ff7f37a6f4
64 Ne3542ad02da547cbad80feed3c458207 schema:isbn 978-3-319-98538-1
65 978-3-319-98539-8
66 schema:name Big Data Analytics and Knowledge Discovery
67 rdf:type schema:Book
68 Ne99ec0b8f2c14f10ac50e8f3cb783b7e schema:location Cham
69 schema:name Springer International Publishing
70 rdf:type schema:Organisation
71 Nf7af406ca42443358021a46491fa5f07 schema:affiliation https://www.grid.ac/institutes/grid.267455.7
72 schema:familyName Xiao
73 schema:givenName Ying
74 rdf:type schema:Person
75 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
76 schema:name Information and Computing Sciences
77 rdf:type schema:DefinedTerm
78 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
79 schema:name Artificial Intelligence and Image Processing
80 rdf:type schema:DefinedTerm
81 sg:person.01200460536.41 schema:affiliation https://www.grid.ac/institutes/grid.267455.7
82 schema:familyName Ezeife
83 schema:givenName C. I.
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200460536.41
85 rdf:type schema:Person
86 sg:pub.10.1007/978-0-387-85820-3_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036183961
87 https://doi.org/10.1007/978-0-387-85820-3_1
88 rdf:type schema:CreativeWork
89 sg:pub.10.1007/978-3-319-29659-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022525812
90 https://doi.org/10.1007/978-3-319-29659-3
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1016/j.ejor.2004.04.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030481370
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1016/j.eswa.2004.10.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006875728
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1016/j.eswa.2007.12.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033769058
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1016/j.eswa.2011.04.154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036748540
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/j.intmar.2008.10.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023201377
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1109/icsssm.2013.6602631 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094662300
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1137/1.9781611972757.76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088800077
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1145/956750.956815 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041602746
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1287/mnsc.1040.0153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064714229
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1509/jmkr.41.3.306.35985 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005293143
111 rdf:type schema:CreativeWork
112 https://www.grid.ac/institutes/grid.267455.7 schema:alternateName University of Windsor
113 schema:name School of Computer Science, University of Windsor, 401 Sunset Ave, N9B 3P4, Windsor, ON, Canada
114 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...