Towards Semi-Automatic Learning-Based Model Transformation View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018-08-23

AUTHORS

Kiana Zeighami , Kevin Leo , Guido Tack , Maria Garcia de la Banda

ABSTRACT

Recently, [16] showed that the nogoods inferred by learning solvers can be used to improve a problem model, by detecting constraints that can be strengthened and new redundant constraints. However, the detection process was manual and required in-depth knowledge of both the learning solver and the model transformations performed by the compiler. In this paper we provide the first steps towards a (largely) automatic detection process. In particular, we discuss how nogoods can be automatically simplified, connected back to the constraints in the model, and grouped into more general “patterns” for which common facts might be found. These patterns are easier to understand and provide stronger evidence of the importance of particular constraints. We also show how nogoods generated by different search strategies and problem instances can increase our confidence in the usefulness of these patterns. Finally, we identify significant challenges and avenues for future research. More... »

PAGES

403-419

Book

TITLE

Principles and Practice of Constraint Programming

ISBN

978-3-319-98333-2
978-3-319-98334-9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-98334-9_27

DOI

http://dx.doi.org/10.1007/978-3-319-98334-9_27

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106284581


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Faculty of IT, Monash University, Melbourne, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1002.3", 
          "name": [
            "Faculty of IT, Monash University, Melbourne, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zeighami", 
        "givenName": "Kiana", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Faculty of IT, Monash University, Melbourne, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1002.3", 
          "name": [
            "Faculty of IT, Monash University, Melbourne, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Leo", 
        "givenName": "Kevin", 
        "id": "sg:person.01303145667.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01303145667.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Data61/CSIRO, Melbourne, Australia", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Faculty of IT, Monash University, Melbourne, Australia", 
            "Data61/CSIRO, Melbourne, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tack", 
        "givenName": "Guido", 
        "id": "sg:person.01235032467.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235032467.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Data61/CSIRO, Melbourne, Australia", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Faculty of IT, Monash University, Melbourne, Australia", 
            "Data61/CSIRO, Melbourne, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de la Banda", 
        "givenName": "Maria Garcia", 
        "id": "sg:person.016350443307.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016350443307.93"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2018-08-23", 
    "datePublishedReg": "2018-08-23", 
    "description": "Recently,\u00a0[16] showed that the nogoods inferred by learning solvers can be used to improve a problem model, by detecting constraints that can be strengthened and new redundant constraints. However, the detection process was manual and required in-depth knowledge of both the learning solver and the model transformations performed by the compiler. In this paper we provide the first steps towards a (largely) automatic detection process. In particular, we discuss how nogoods can be automatically simplified, connected back to the constraints in the model, and grouped into more general \u201cpatterns\u201d for which common facts might be found. These patterns are easier to understand and provide stronger evidence of the importance of particular constraints. We also show how nogoods generated by different search strategies and problem instances can increase our confidence in the usefulness of these patterns. Finally, we identify significant challenges and avenues for future research.", 
    "editor": [
      {
        "familyName": "Hooker", 
        "givenName": "John", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-98334-9_27", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-98333-2", 
        "978-3-319-98334-9"
      ], 
      "name": "Principles and Practice of Constraint Programming", 
      "type": "Book"
    }, 
    "keywords": [
      "model transformation", 
      "detection process", 
      "automatic detection process", 
      "semi-automatic learning", 
      "different search strategies", 
      "problem instances", 
      "nogoods", 
      "problem model", 
      "redundant constraints", 
      "search strategy", 
      "particular constraints", 
      "common fact", 
      "constraints", 
      "significant challenge", 
      "solver", 
      "compiler", 
      "first step", 
      "depth knowledge", 
      "learning", 
      "instances", 
      "model", 
      "challenges", 
      "process", 
      "knowledge", 
      "step", 
      "transformation", 
      "usefulness", 
      "confidence", 
      "future research", 
      "research", 
      "patterns", 
      "strategies", 
      "fact", 
      "importance", 
      "avenues", 
      "strong evidence", 
      "evidence", 
      "paper"
    ], 
    "name": "Towards Semi-Automatic Learning-Based Model Transformation", 
    "pagination": "403-419", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106284581"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-98334-9_27"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-98334-9_27", 
      "https://app.dimensions.ai/details/publication/pub.1106284581"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-20T07:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_152.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-98334-9_27"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-98334-9_27'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-98334-9_27'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-98334-9_27'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-98334-9_27'


 

This table displays all metadata directly associated to this object as RDF triples.

122 TRIPLES      23 PREDICATES      63 URIs      56 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-98334-9_27 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N4ad7b7eaebbe441589aa9b7c7660f809
4 schema:datePublished 2018-08-23
5 schema:datePublishedReg 2018-08-23
6 schema:description Recently, [16] showed that the nogoods inferred by learning solvers can be used to improve a problem model, by detecting constraints that can be strengthened and new redundant constraints. However, the detection process was manual and required in-depth knowledge of both the learning solver and the model transformations performed by the compiler. In this paper we provide the first steps towards a (largely) automatic detection process. In particular, we discuss how nogoods can be automatically simplified, connected back to the constraints in the model, and grouped into more general “patterns” for which common facts might be found. These patterns are easier to understand and provide stronger evidence of the importance of particular constraints. We also show how nogoods generated by different search strategies and problem instances can increase our confidence in the usefulness of these patterns. Finally, we identify significant challenges and avenues for future research.
7 schema:editor N1bb0eac885a24201ab557a76f5c7e221
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N1f06739887384e43b1a608de81b02fcd
12 schema:keywords automatic detection process
13 avenues
14 challenges
15 common fact
16 compiler
17 confidence
18 constraints
19 depth knowledge
20 detection process
21 different search strategies
22 evidence
23 fact
24 first step
25 future research
26 importance
27 instances
28 knowledge
29 learning
30 model
31 model transformation
32 nogoods
33 paper
34 particular constraints
35 patterns
36 problem instances
37 problem model
38 process
39 redundant constraints
40 research
41 search strategy
42 semi-automatic learning
43 significant challenge
44 solver
45 step
46 strategies
47 strong evidence
48 transformation
49 usefulness
50 schema:name Towards Semi-Automatic Learning-Based Model Transformation
51 schema:pagination 403-419
52 schema:productId Naf2b9abe0e734b269cfade2e98a0cbda
53 Nd5f673e8e74c4d898b38e4f9460240ae
54 schema:publisher Nd0c3c3f5efbe4ed986cdef9d56d66de4
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106284581
56 https://doi.org/10.1007/978-3-319-98334-9_27
57 schema:sdDatePublished 2022-05-20T07:42
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher N008eb26e1e6c4ae58902c51d635664c1
60 schema:url https://doi.org/10.1007/978-3-319-98334-9_27
61 sgo:license sg:explorer/license/
62 sgo:sdDataset chapters
63 rdf:type schema:Chapter
64 N008eb26e1e6c4ae58902c51d635664c1 schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 N03af3709e0af466fa6e1b46ebbeb6c25 rdf:first sg:person.016350443307.93
67 rdf:rest rdf:nil
68 N1bb0eac885a24201ab557a76f5c7e221 rdf:first Neab17122e9284b91b391067b3a3653b2
69 rdf:rest rdf:nil
70 N1f06739887384e43b1a608de81b02fcd schema:isbn 978-3-319-98333-2
71 978-3-319-98334-9
72 schema:name Principles and Practice of Constraint Programming
73 rdf:type schema:Book
74 N42cdc97aad2644f7b94ec0c03d943c31 rdf:first sg:person.01303145667.62
75 rdf:rest N4b69fd4767a745feb203f6a9746df090
76 N4a31fcd0f7d847ff81fb5c1da6fbd9b1 schema:affiliation grid-institutes:grid.1002.3
77 schema:familyName Zeighami
78 schema:givenName Kiana
79 rdf:type schema:Person
80 N4ad7b7eaebbe441589aa9b7c7660f809 rdf:first N4a31fcd0f7d847ff81fb5c1da6fbd9b1
81 rdf:rest N42cdc97aad2644f7b94ec0c03d943c31
82 N4b69fd4767a745feb203f6a9746df090 rdf:first sg:person.01235032467.07
83 rdf:rest N03af3709e0af466fa6e1b46ebbeb6c25
84 Naf2b9abe0e734b269cfade2e98a0cbda schema:name doi
85 schema:value 10.1007/978-3-319-98334-9_27
86 rdf:type schema:PropertyValue
87 Nd0c3c3f5efbe4ed986cdef9d56d66de4 schema:name Springer Nature
88 rdf:type schema:Organisation
89 Nd5f673e8e74c4d898b38e4f9460240ae schema:name dimensions_id
90 schema:value pub.1106284581
91 rdf:type schema:PropertyValue
92 Neab17122e9284b91b391067b3a3653b2 schema:familyName Hooker
93 schema:givenName John
94 rdf:type schema:Person
95 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
96 schema:name Information and Computing Sciences
97 rdf:type schema:DefinedTerm
98 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
99 schema:name Artificial Intelligence and Image Processing
100 rdf:type schema:DefinedTerm
101 sg:person.01235032467.07 schema:affiliation grid-institutes:None
102 schema:familyName Tack
103 schema:givenName Guido
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235032467.07
105 rdf:type schema:Person
106 sg:person.01303145667.62 schema:affiliation grid-institutes:grid.1002.3
107 schema:familyName Leo
108 schema:givenName Kevin
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01303145667.62
110 rdf:type schema:Person
111 sg:person.016350443307.93 schema:affiliation grid-institutes:None
112 schema:familyName de la Banda
113 schema:givenName Maria Garcia
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016350443307.93
115 rdf:type schema:Person
116 grid-institutes:None schema:alternateName Data61/CSIRO, Melbourne, Australia
117 schema:name Data61/CSIRO, Melbourne, Australia
118 Faculty of IT, Monash University, Melbourne, Australia
119 rdf:type schema:Organization
120 grid-institutes:grid.1002.3 schema:alternateName Faculty of IT, Monash University, Melbourne, Australia
121 schema:name Faculty of IT, Monash University, Melbourne, Australia
122 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...