EcoSim, an Enhanced Artificial Ecosystem: Addressing Deeper Behavioral, Ecological, and Evolutionary Questions View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018-09-04

AUTHORS

Ryan Scott , Brian MacPherson , Robin Gras

ABSTRACT

This chapter discusses individual-based models (IBMs) and uses the Overview, Design concepts, and Details (ODD) protocol to describe a predator-prey evolutionary ecosystem IBM called EcoSim. EcoSim is one of the most complex and large-scale IBMs of its kind, allowing hundreds of thousands of intricate individuals to interact and evolve over thousands of time steps. Individuals in EcoSim have a behavioral model represented by a fuzzy cognitive map (FCM). The FCM, described in this chapter, is a cognitive architecture well-suited for individuals in EcoSim due to its efficiency and the complexity of decision-making it allows. Furthermore, it can be encoded as a vector of real numbers, lending itself to being part of the genetic material passed on by individuals during reproduction. This allows for meaningful evolution of their behaviors and natural selection without predefined fitness. EcoSim has been enhanced to increase the breadth and depth of the questions it can answer. New features include: fertilization of primary producers by consumers, predator-prey combat, sexual reproduction, sex-linkage of genes, multiple modes of reproduction, size-based dominance hierarchy, and more. In addition to describing EcoSim in detail, we present data from default EcoSim runs to show potential users the types of data EcoSim generates. Furthermore, we present a brief sensitivity analysis of some variables in EcoSim, and a case study that demonstrates research that can be performed using EcoSim. In the case study, we elucidate some evolutionary and behavioral impacts on animals under two conditions: when primary production is limited, and when energy expenditure is reduced. More... »

PAGES

223-278

Book

TITLE

Cognitive Architectures

ISBN

978-3-319-97549-8
978-3-319-97550-4

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-97550-4_14

DOI

http://dx.doi.org/10.1007/978-3-319-97550-4_14

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106541910


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0602", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Ecology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Windsor, 401 Sunset Ave., Windsor, Ontario, Canada", 
          "id": "http://www.grid.ac/institutes/grid.267455.7", 
          "name": [
            "University of Windsor, 401 Sunset Ave., Windsor, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Scott", 
        "givenName": "Ryan", 
        "id": "sg:person.014133040653.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014133040653.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Windsor, 401 Sunset Ave., Windsor, Ontario, Canada", 
          "id": "http://www.grid.ac/institutes/grid.267455.7", 
          "name": [
            "University of Windsor, 401 Sunset Ave., Windsor, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "MacPherson", 
        "givenName": "Brian", 
        "id": "sg:person.014662306053.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014662306053.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Windsor, 401 Sunset Ave., Windsor, Ontario, Canada", 
          "id": "http://www.grid.ac/institutes/grid.267455.7", 
          "name": [
            "University of Windsor, 401 Sunset Ave., Windsor, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gras", 
        "givenName": "Robin", 
        "id": "sg:person.0712313416.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712313416.43"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2018-09-04", 
    "datePublishedReg": "2018-09-04", 
    "description": "This chapter discusses individual-based models (IBMs) and uses the Overview, Design concepts, and Details (ODD) protocol to describe a predator-prey evolutionary ecosystem IBM called EcoSim. EcoSim is one of the most complex and large-scale IBMs of its kind, allowing hundreds of thousands of intricate individuals to interact and evolve over thousands of time steps. Individuals in EcoSim have a behavioral model represented by a fuzzy cognitive map (FCM). The FCM, described in this chapter, is a cognitive architecture well-suited for individuals in EcoSim due to its efficiency and the complexity of decision-making it allows. Furthermore, it can be encoded as a vector of real numbers, lending itself to being part of the genetic material passed on by individuals during reproduction. This allows for meaningful evolution of their behaviors and natural selection without predefined fitness. EcoSim has been enhanced to increase the breadth and depth of the questions it can answer. New features include: fertilization of primary producers by consumers, predator-prey combat, sexual reproduction, sex-linkage of genes, multiple modes of reproduction, size-based dominance hierarchy, and more. In addition to describing EcoSim in detail, we present data from default EcoSim runs to show potential users the types of data EcoSim generates. Furthermore, we present a brief sensitivity analysis of some variables in EcoSim, and a case study that demonstrates research that can be performed using EcoSim. In the case study, we elucidate some evolutionary and behavioral impacts on animals under two conditions: when primary production is limited, and when energy expenditure is reduced.", 
    "editor": [
      {
        "familyName": "Aldinhas Ferreira", 
        "givenName": "Maria Isabel", 
        "type": "Person"
      }, 
      {
        "familyName": "Silva Sequeira", 
        "givenName": "Jo\u00e3o", 
        "type": "Person"
      }, 
      {
        "familyName": "Ventura", 
        "givenName": "Rodrigo", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-97550-4_14", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-97549-8", 
        "978-3-319-97550-4"
      ], 
      "name": "Cognitive Architectures", 
      "type": "Book"
    }, 
    "keywords": [
      "individual-based model", 
      "sexual reproduction", 
      "evolutionary questions", 
      "natural selection", 
      "primary producers", 
      "artificial ecosystems", 
      "Ecosim", 
      "genetic material", 
      "detail protocols", 
      "primary production", 
      "size-based dominance hierarchy", 
      "reproduction", 
      "dominance hierarchy", 
      "genes", 
      "ecosystems", 
      "meaningful evolution", 
      "Ecological", 
      "fitness", 
      "fertilization", 
      "hundreds of thousands", 
      "thousands", 
      "multiple modes", 
      "evolution", 
      "individuals", 
      "energy expenditure", 
      "production", 
      "selection", 
      "animals", 
      "hundreds", 
      "vector", 
      "brief sensitivity analysis", 
      "producers", 
      "breadth", 
      "Fuzzy Cognitive Maps", 
      "chapter", 
      "study", 
      "step", 
      "addition", 
      "maps", 
      "analysis", 
      "types", 
      "behavioral impact", 
      "number", 
      "questions", 
      "conditions", 
      "part", 
      "overview", 
      "cognitive architecture", 
      "cognitive maps", 
      "architecture", 
      "data", 
      "features", 
      "impact", 
      "complexity", 
      "model", 
      "protocol", 
      "detail", 
      "depth", 
      "combat", 
      "hierarchy", 
      "efficiency", 
      "behavioral model", 
      "new features", 
      "mode", 
      "behavioral", 
      "research", 
      "consumers", 
      "case study", 
      "behavior", 
      "expenditure", 
      "kind", 
      "variables", 
      "concept", 
      "materials", 
      "potential users", 
      "sensitivity analysis", 
      "users", 
      "time step", 
      "design concept", 
      "real numbers", 
      "predator-prey evolutionary ecosystem IBM", 
      "evolutionary ecosystem IBM", 
      "ecosystem IBM", 
      "large-scale IBMs", 
      "intricate individuals", 
      "predator-prey combat", 
      "default EcoSim", 
      "data EcoSim", 
      "Enhanced Artificial Ecosystem", 
      "Deeper Behavioral"
    ], 
    "name": "EcoSim, an Enhanced Artificial Ecosystem: Addressing Deeper Behavioral, Ecological, and Evolutionary Questions", 
    "pagination": "223-278", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106541910"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-97550-4_14"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-97550-4_14", 
      "https://app.dimensions.ai/details/publication/pub.1106541910"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-11-01T19:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/chapter/chapter_63.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-97550-4_14"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-97550-4_14'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-97550-4_14'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-97550-4_14'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-97550-4_14'


 

This table displays all metadata directly associated to this object as RDF triples.

178 TRIPLES      23 PREDICATES      115 URIs      107 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-97550-4_14 schema:about anzsrc-for:06
2 anzsrc-for:0602
3 anzsrc-for:0604
4 schema:author N5b3dfe7b2e604633989c6e3a655389cb
5 schema:datePublished 2018-09-04
6 schema:datePublishedReg 2018-09-04
7 schema:description This chapter discusses individual-based models (IBMs) and uses the Overview, Design concepts, and Details (ODD) protocol to describe a predator-prey evolutionary ecosystem IBM called EcoSim. EcoSim is one of the most complex and large-scale IBMs of its kind, allowing hundreds of thousands of intricate individuals to interact and evolve over thousands of time steps. Individuals in EcoSim have a behavioral model represented by a fuzzy cognitive map (FCM). The FCM, described in this chapter, is a cognitive architecture well-suited for individuals in EcoSim due to its efficiency and the complexity of decision-making it allows. Furthermore, it can be encoded as a vector of real numbers, lending itself to being part of the genetic material passed on by individuals during reproduction. This allows for meaningful evolution of their behaviors and natural selection without predefined fitness. EcoSim has been enhanced to increase the breadth and depth of the questions it can answer. New features include: fertilization of primary producers by consumers, predator-prey combat, sexual reproduction, sex-linkage of genes, multiple modes of reproduction, size-based dominance hierarchy, and more. In addition to describing EcoSim in detail, we present data from default EcoSim runs to show potential users the types of data EcoSim generates. Furthermore, we present a brief sensitivity analysis of some variables in EcoSim, and a case study that demonstrates research that can be performed using EcoSim. In the case study, we elucidate some evolutionary and behavioral impacts on animals under two conditions: when primary production is limited, and when energy expenditure is reduced.
8 schema:editor N7b9efcc79d1c4817a563fd6f5b982f1f
9 schema:genre chapter
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf Na5cc4fc3e8844cd59fd06870ab357666
13 schema:keywords Deeper Behavioral
14 Ecological
15 Ecosim
16 Enhanced Artificial Ecosystem
17 Fuzzy Cognitive Maps
18 addition
19 analysis
20 animals
21 architecture
22 artificial ecosystems
23 behavior
24 behavioral
25 behavioral impact
26 behavioral model
27 breadth
28 brief sensitivity analysis
29 case study
30 chapter
31 cognitive architecture
32 cognitive maps
33 combat
34 complexity
35 concept
36 conditions
37 consumers
38 data
39 data EcoSim
40 default EcoSim
41 depth
42 design concept
43 detail
44 detail protocols
45 dominance hierarchy
46 ecosystem IBM
47 ecosystems
48 efficiency
49 energy expenditure
50 evolution
51 evolutionary ecosystem IBM
52 evolutionary questions
53 expenditure
54 features
55 fertilization
56 fitness
57 genes
58 genetic material
59 hierarchy
60 hundreds
61 hundreds of thousands
62 impact
63 individual-based model
64 individuals
65 intricate individuals
66 kind
67 large-scale IBMs
68 maps
69 materials
70 meaningful evolution
71 mode
72 model
73 multiple modes
74 natural selection
75 new features
76 number
77 overview
78 part
79 potential users
80 predator-prey combat
81 predator-prey evolutionary ecosystem IBM
82 primary producers
83 primary production
84 producers
85 production
86 protocol
87 questions
88 real numbers
89 reproduction
90 research
91 selection
92 sensitivity analysis
93 sexual reproduction
94 size-based dominance hierarchy
95 step
96 study
97 thousands
98 time step
99 types
100 users
101 variables
102 vector
103 schema:name EcoSim, an Enhanced Artificial Ecosystem: Addressing Deeper Behavioral, Ecological, and Evolutionary Questions
104 schema:pagination 223-278
105 schema:productId N40f4694de0a94edabc87a3557b739503
106 Nc33ff519773a4a34818af9ec2e67e0fb
107 schema:publisher Nfff0872eedbd4619a1667adacdd1002b
108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106541910
109 https://doi.org/10.1007/978-3-319-97550-4_14
110 schema:sdDatePublished 2021-11-01T19:02
111 schema:sdLicense https://scigraph.springernature.com/explorer/license/
112 schema:sdPublisher N1b99e698f5694987b724e2111982022d
113 schema:url https://doi.org/10.1007/978-3-319-97550-4_14
114 sgo:license sg:explorer/license/
115 sgo:sdDataset chapters
116 rdf:type schema:Chapter
117 N0510b9cf11124024a89aab75028ae31a rdf:first N32353644c2b84c9c8201375a10a134ea
118 rdf:rest Nf5ea97366336427bbbd9da8abfb3bcc7
119 N1813798b592d44c2988d7964e7f4817a rdf:first sg:person.0712313416.43
120 rdf:rest rdf:nil
121 N1b99e698f5694987b724e2111982022d schema:name Springer Nature - SN SciGraph project
122 rdf:type schema:Organization
123 N32353644c2b84c9c8201375a10a134ea schema:familyName Silva Sequeira
124 schema:givenName João
125 rdf:type schema:Person
126 N40f4694de0a94edabc87a3557b739503 schema:name doi
127 schema:value 10.1007/978-3-319-97550-4_14
128 rdf:type schema:PropertyValue
129 N41da96e1b7b14d3e8dc4d10dc95dd90e rdf:first sg:person.014662306053.16
130 rdf:rest N1813798b592d44c2988d7964e7f4817a
131 N587a3e34b76343838b7cce241bd47a1b schema:familyName Aldinhas Ferreira
132 schema:givenName Maria Isabel
133 rdf:type schema:Person
134 N5b3dfe7b2e604633989c6e3a655389cb rdf:first sg:person.014133040653.62
135 rdf:rest N41da96e1b7b14d3e8dc4d10dc95dd90e
136 N7086456216144eff88c2e8e2c8c91380 schema:familyName Ventura
137 schema:givenName Rodrigo
138 rdf:type schema:Person
139 N7b9efcc79d1c4817a563fd6f5b982f1f rdf:first N587a3e34b76343838b7cce241bd47a1b
140 rdf:rest N0510b9cf11124024a89aab75028ae31a
141 Na5cc4fc3e8844cd59fd06870ab357666 schema:isbn 978-3-319-97549-8
142 978-3-319-97550-4
143 schema:name Cognitive Architectures
144 rdf:type schema:Book
145 Nc33ff519773a4a34818af9ec2e67e0fb schema:name dimensions_id
146 schema:value pub.1106541910
147 rdf:type schema:PropertyValue
148 Nf5ea97366336427bbbd9da8abfb3bcc7 rdf:first N7086456216144eff88c2e8e2c8c91380
149 rdf:rest rdf:nil
150 Nfff0872eedbd4619a1667adacdd1002b schema:name Springer Nature
151 rdf:type schema:Organisation
152 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
153 schema:name Biological Sciences
154 rdf:type schema:DefinedTerm
155 anzsrc-for:0602 schema:inDefinedTermSet anzsrc-for:
156 schema:name Ecology
157 rdf:type schema:DefinedTerm
158 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
159 schema:name Genetics
160 rdf:type schema:DefinedTerm
161 sg:person.014133040653.62 schema:affiliation grid-institutes:grid.267455.7
162 schema:familyName Scott
163 schema:givenName Ryan
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014133040653.62
165 rdf:type schema:Person
166 sg:person.014662306053.16 schema:affiliation grid-institutes:grid.267455.7
167 schema:familyName MacPherson
168 schema:givenName Brian
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014662306053.16
170 rdf:type schema:Person
171 sg:person.0712313416.43 schema:affiliation grid-institutes:grid.267455.7
172 schema:familyName Gras
173 schema:givenName Robin
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712313416.43
175 rdf:type schema:Person
176 grid-institutes:grid.267455.7 schema:alternateName University of Windsor, 401 Sunset Ave., Windsor, Ontario, Canada
177 schema:name University of Windsor, 401 Sunset Ave., Windsor, Ontario, Canada
178 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...