EcoSim, an Enhanced Artificial Ecosystem: Addressing Deeper Behavioral, Ecological, and Evolutionary Questions View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018-09-04

AUTHORS

Ryan Scott , Brian MacPherson , Robin Gras

ABSTRACT

This chapter discusses individual-based models (IBMs) and uses the Overview, Design concepts, and Details (ODD) protocol to describe a predator-prey evolutionary ecosystem IBM called EcoSim. EcoSim is one of the most complex and large-scale IBMs of its kind, allowing hundreds of thousands of intricate individuals to interact and evolve over thousands of time steps. Individuals in EcoSim have a behavioral model represented by a fuzzy cognitive map (FCM). The FCM, described in this chapter, is a cognitive architecture well-suited for individuals in EcoSim due to its efficiency and the complexity of decision-making it allows. Furthermore, it can be encoded as a vector of real numbers, lending itself to being part of the genetic material passed on by individuals during reproduction. This allows for meaningful evolution of their behaviors and natural selection without predefined fitness. EcoSim has been enhanced to increase the breadth and depth of the questions it can answer. New features include: fertilization of primary producers by consumers, predator-prey combat, sexual reproduction, sex-linkage of genes, multiple modes of reproduction, size-based dominance hierarchy, and more. In addition to describing EcoSim in detail, we present data from default EcoSim runs to show potential users the types of data EcoSim generates. Furthermore, we present a brief sensitivity analysis of some variables in EcoSim, and a case study that demonstrates research that can be performed using EcoSim. In the case study, we elucidate some evolutionary and behavioral impacts on animals under two conditions: when primary production is limited, and when energy expenditure is reduced. More... »

PAGES

223-278

Book

TITLE

Cognitive Architectures

ISBN

978-3-319-97549-8
978-3-319-97550-4

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-97550-4_14

DOI

http://dx.doi.org/10.1007/978-3-319-97550-4_14

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106541910


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0602", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Ecology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Windsor, 401 Sunset Ave., Windsor, Ontario, Canada", 
          "id": "http://www.grid.ac/institutes/grid.267455.7", 
          "name": [
            "University of Windsor, 401 Sunset Ave., Windsor, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Scott", 
        "givenName": "Ryan", 
        "id": "sg:person.014133040653.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014133040653.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Windsor, 401 Sunset Ave., Windsor, Ontario, Canada", 
          "id": "http://www.grid.ac/institutes/grid.267455.7", 
          "name": [
            "University of Windsor, 401 Sunset Ave., Windsor, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "MacPherson", 
        "givenName": "Brian", 
        "id": "sg:person.014662306053.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014662306053.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Windsor, 401 Sunset Ave., Windsor, Ontario, Canada", 
          "id": "http://www.grid.ac/institutes/grid.267455.7", 
          "name": [
            "University of Windsor, 401 Sunset Ave., Windsor, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gras", 
        "givenName": "Robin", 
        "id": "sg:person.0712313416.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712313416.43"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2018-09-04", 
    "datePublishedReg": "2018-09-04", 
    "description": "This chapter discusses individual-based models (IBMs) and uses the Overview, Design concepts, and Details (ODD) protocol to describe a predator-prey evolutionary ecosystem IBM called EcoSim. EcoSim is one of the most complex and large-scale IBMs of its kind, allowing hundreds of thousands of intricate individuals to interact and evolve over thousands of time steps. Individuals in EcoSim have a behavioral model represented by a fuzzy cognitive map (FCM). The FCM, described in this chapter, is a cognitive architecture well-suited for individuals in EcoSim due to its efficiency and the complexity of decision-making it allows. Furthermore, it can be encoded as a vector of real numbers, lending itself to being part of the genetic material passed on by individuals during reproduction. This allows for meaningful evolution of their behaviors and natural selection without predefined fitness. EcoSim has been enhanced to increase the breadth and depth of the questions it can answer. New features include: fertilization of primary producers by consumers, predator-prey combat, sexual reproduction, sex-linkage of genes, multiple modes of reproduction, size-based dominance hierarchy, and more. In addition to describing EcoSim in detail, we present data from default EcoSim runs to show potential users the types of data EcoSim generates. Furthermore, we present a brief sensitivity analysis of some variables in EcoSim, and a case study that demonstrates research that can be performed using EcoSim. In the case study, we elucidate some evolutionary and behavioral impacts on animals under two conditions: when primary production is limited, and when energy expenditure is reduced.", 
    "editor": [
      {
        "familyName": "Aldinhas Ferreira", 
        "givenName": "Maria Isabel", 
        "type": "Person"
      }, 
      {
        "familyName": "Silva Sequeira", 
        "givenName": "Jo\u00e3o", 
        "type": "Person"
      }, 
      {
        "familyName": "Ventura", 
        "givenName": "Rodrigo", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-97550-4_14", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-97549-8", 
        "978-3-319-97550-4"
      ], 
      "name": "Cognitive Architectures", 
      "type": "Book"
    }, 
    "keywords": [
      "individual-based model", 
      "sexual reproduction", 
      "evolutionary questions", 
      "natural selection", 
      "primary producers", 
      "artificial ecosystems", 
      "Ecosim", 
      "genetic material", 
      "detail protocols", 
      "primary production", 
      "size-based dominance hierarchy", 
      "reproduction", 
      "dominance hierarchy", 
      "genes", 
      "ecosystems", 
      "meaningful evolution", 
      "Ecological", 
      "fitness", 
      "fertilization", 
      "hundreds of thousands", 
      "thousands", 
      "multiple modes", 
      "evolution", 
      "individuals", 
      "energy expenditure", 
      "production", 
      "selection", 
      "animals", 
      "hundreds", 
      "vector", 
      "brief sensitivity analysis", 
      "producers", 
      "breadth", 
      "Fuzzy Cognitive Maps", 
      "chapter", 
      "study", 
      "step", 
      "addition", 
      "maps", 
      "analysis", 
      "types", 
      "behavioral impact", 
      "number", 
      "questions", 
      "conditions", 
      "part", 
      "overview", 
      "cognitive architecture", 
      "cognitive maps", 
      "architecture", 
      "data", 
      "features", 
      "impact", 
      "complexity", 
      "model", 
      "protocol", 
      "detail", 
      "depth", 
      "combat", 
      "hierarchy", 
      "efficiency", 
      "behavioral model", 
      "new features", 
      "mode", 
      "behavioral", 
      "research", 
      "consumers", 
      "case study", 
      "behavior", 
      "expenditure", 
      "kind", 
      "variables", 
      "concept", 
      "materials", 
      "potential users", 
      "sensitivity analysis", 
      "users", 
      "time step", 
      "design concept", 
      "real numbers", 
      "predator-prey evolutionary ecosystem IBM", 
      "evolutionary ecosystem IBM", 
      "ecosystem IBM", 
      "large-scale IBMs", 
      "intricate individuals", 
      "predator-prey combat", 
      "default EcoSim", 
      "data EcoSim", 
      "Enhanced Artificial Ecosystem", 
      "Deeper Behavioral"
    ], 
    "name": "EcoSim, an Enhanced Artificial Ecosystem: Addressing Deeper Behavioral, Ecological, and Evolutionary Questions", 
    "pagination": "223-278", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106541910"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-97550-4_14"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-97550-4_14", 
      "https://app.dimensions.ai/details/publication/pub.1106541910"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_41.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-97550-4_14"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-97550-4_14'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-97550-4_14'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-97550-4_14'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-97550-4_14'


 

This table displays all metadata directly associated to this object as RDF triples.

178 TRIPLES      23 PREDICATES      115 URIs      107 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-97550-4_14 schema:about anzsrc-for:06
2 anzsrc-for:0602
3 anzsrc-for:0604
4 schema:author N7284af29ae0244219bb73d5c62842a57
5 schema:datePublished 2018-09-04
6 schema:datePublishedReg 2018-09-04
7 schema:description This chapter discusses individual-based models (IBMs) and uses the Overview, Design concepts, and Details (ODD) protocol to describe a predator-prey evolutionary ecosystem IBM called EcoSim. EcoSim is one of the most complex and large-scale IBMs of its kind, allowing hundreds of thousands of intricate individuals to interact and evolve over thousands of time steps. Individuals in EcoSim have a behavioral model represented by a fuzzy cognitive map (FCM). The FCM, described in this chapter, is a cognitive architecture well-suited for individuals in EcoSim due to its efficiency and the complexity of decision-making it allows. Furthermore, it can be encoded as a vector of real numbers, lending itself to being part of the genetic material passed on by individuals during reproduction. This allows for meaningful evolution of their behaviors and natural selection without predefined fitness. EcoSim has been enhanced to increase the breadth and depth of the questions it can answer. New features include: fertilization of primary producers by consumers, predator-prey combat, sexual reproduction, sex-linkage of genes, multiple modes of reproduction, size-based dominance hierarchy, and more. In addition to describing EcoSim in detail, we present data from default EcoSim runs to show potential users the types of data EcoSim generates. Furthermore, we present a brief sensitivity analysis of some variables in EcoSim, and a case study that demonstrates research that can be performed using EcoSim. In the case study, we elucidate some evolutionary and behavioral impacts on animals under two conditions: when primary production is limited, and when energy expenditure is reduced.
8 schema:editor Nea2f102ef1c0450f8c6f0f91d6bbd01c
9 schema:genre chapter
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N472bf6d800134259bb4b710d41762d24
13 schema:keywords Deeper Behavioral
14 Ecological
15 Ecosim
16 Enhanced Artificial Ecosystem
17 Fuzzy Cognitive Maps
18 addition
19 analysis
20 animals
21 architecture
22 artificial ecosystems
23 behavior
24 behavioral
25 behavioral impact
26 behavioral model
27 breadth
28 brief sensitivity analysis
29 case study
30 chapter
31 cognitive architecture
32 cognitive maps
33 combat
34 complexity
35 concept
36 conditions
37 consumers
38 data
39 data EcoSim
40 default EcoSim
41 depth
42 design concept
43 detail
44 detail protocols
45 dominance hierarchy
46 ecosystem IBM
47 ecosystems
48 efficiency
49 energy expenditure
50 evolution
51 evolutionary ecosystem IBM
52 evolutionary questions
53 expenditure
54 features
55 fertilization
56 fitness
57 genes
58 genetic material
59 hierarchy
60 hundreds
61 hundreds of thousands
62 impact
63 individual-based model
64 individuals
65 intricate individuals
66 kind
67 large-scale IBMs
68 maps
69 materials
70 meaningful evolution
71 mode
72 model
73 multiple modes
74 natural selection
75 new features
76 number
77 overview
78 part
79 potential users
80 predator-prey combat
81 predator-prey evolutionary ecosystem IBM
82 primary producers
83 primary production
84 producers
85 production
86 protocol
87 questions
88 real numbers
89 reproduction
90 research
91 selection
92 sensitivity analysis
93 sexual reproduction
94 size-based dominance hierarchy
95 step
96 study
97 thousands
98 time step
99 types
100 users
101 variables
102 vector
103 schema:name EcoSim, an Enhanced Artificial Ecosystem: Addressing Deeper Behavioral, Ecological, and Evolutionary Questions
104 schema:pagination 223-278
105 schema:productId N60ed6dca792f4bd5b12a664ea00657c2
106 N74189082e3664d5d8198ab121fa156c6
107 schema:publisher Nc4b23b00c90a4e7887a0e63e22e3cf0b
108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106541910
109 https://doi.org/10.1007/978-3-319-97550-4_14
110 schema:sdDatePublished 2022-01-01T19:23
111 schema:sdLicense https://scigraph.springernature.com/explorer/license/
112 schema:sdPublisher Nc16229cf36e5479c9c6177e9bbfbf402
113 schema:url https://doi.org/10.1007/978-3-319-97550-4_14
114 sgo:license sg:explorer/license/
115 sgo:sdDataset chapters
116 rdf:type schema:Chapter
117 N214b3644a9cb42fa8dba6c0fe60565a9 schema:familyName Aldinhas Ferreira
118 schema:givenName Maria Isabel
119 rdf:type schema:Person
120 N347f149f2042449cb63300c3aecf9050 schema:familyName Silva Sequeira
121 schema:givenName João
122 rdf:type schema:Person
123 N357dd21d07d94754ac818b0e0a89c19d rdf:first Nba98c352422d480989eef3479feda590
124 rdf:rest rdf:nil
125 N472bf6d800134259bb4b710d41762d24 schema:isbn 978-3-319-97549-8
126 978-3-319-97550-4
127 schema:name Cognitive Architectures
128 rdf:type schema:Book
129 N60ed6dca792f4bd5b12a664ea00657c2 schema:name doi
130 schema:value 10.1007/978-3-319-97550-4_14
131 rdf:type schema:PropertyValue
132 N7284af29ae0244219bb73d5c62842a57 rdf:first sg:person.014133040653.62
133 rdf:rest N7b05ca901b22415090e906f250739cc5
134 N74189082e3664d5d8198ab121fa156c6 schema:name dimensions_id
135 schema:value pub.1106541910
136 rdf:type schema:PropertyValue
137 N7b05ca901b22415090e906f250739cc5 rdf:first sg:person.014662306053.16
138 rdf:rest Nfca945f2910e4c4f95fe102d20525ce0
139 N7ce03966a4144c75ac90895fc1b03186 rdf:first N347f149f2042449cb63300c3aecf9050
140 rdf:rest N357dd21d07d94754ac818b0e0a89c19d
141 Nba98c352422d480989eef3479feda590 schema:familyName Ventura
142 schema:givenName Rodrigo
143 rdf:type schema:Person
144 Nc16229cf36e5479c9c6177e9bbfbf402 schema:name Springer Nature - SN SciGraph project
145 rdf:type schema:Organization
146 Nc4b23b00c90a4e7887a0e63e22e3cf0b schema:name Springer Nature
147 rdf:type schema:Organisation
148 Nea2f102ef1c0450f8c6f0f91d6bbd01c rdf:first N214b3644a9cb42fa8dba6c0fe60565a9
149 rdf:rest N7ce03966a4144c75ac90895fc1b03186
150 Nfca945f2910e4c4f95fe102d20525ce0 rdf:first sg:person.0712313416.43
151 rdf:rest rdf:nil
152 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
153 schema:name Biological Sciences
154 rdf:type schema:DefinedTerm
155 anzsrc-for:0602 schema:inDefinedTermSet anzsrc-for:
156 schema:name Ecology
157 rdf:type schema:DefinedTerm
158 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
159 schema:name Genetics
160 rdf:type schema:DefinedTerm
161 sg:person.014133040653.62 schema:affiliation grid-institutes:grid.267455.7
162 schema:familyName Scott
163 schema:givenName Ryan
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014133040653.62
165 rdf:type schema:Person
166 sg:person.014662306053.16 schema:affiliation grid-institutes:grid.267455.7
167 schema:familyName MacPherson
168 schema:givenName Brian
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014662306053.16
170 rdf:type schema:Person
171 sg:person.0712313416.43 schema:affiliation grid-institutes:grid.267455.7
172 schema:familyName Gras
173 schema:givenName Robin
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712313416.43
175 rdf:type schema:Person
176 grid-institutes:grid.267455.7 schema:alternateName University of Windsor, 401 Sunset Ave., Windsor, Ontario, Canada
177 schema:name University of Windsor, 401 Sunset Ave., Windsor, Ontario, Canada
178 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...