Primal-Dual Proximal Algorithms for Structured Convex Optimization: A Unifying Framework View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018-11-12

AUTHORS

Puya Latafat , Panagiotis Patrinos

ABSTRACT

We present a simple primal-dual framework for solving structured convex optimization problems involving the sum of a Lipschitz-differentiable function and two nonsmooth proximable functions, one of which is composed with a linear mapping. The framework is based on the recently proposed asymmetric forward-backward-adjoint three-term splitting (AFBA); depending on the value of two parameters, (extensions of) known algorithms as well as many new primal-dual schemes are obtained. This allows for a unified analysis that, among other things, establishes linear convergence under four different regularity assumptions for the cost functions. Most notably, linear convergence is established for the class of problems with piecewise linear-quadratic cost functions. More... »

PAGES

97-120

Book

TITLE

Large-Scale and Distributed Optimization

ISBN

978-3-319-97477-4
978-3-319-97478-1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-97478-1_5

DOI

http://dx.doi.org/10.1007/978-3-319-97478-1_5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1109852631


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "IMT Institute for Advanced Studies Lucca", 
          "id": "https://www.grid.ac/institutes/grid.462365.0", 
          "name": [
            "KU Leuven, Department of Electrical Engineering (ESAT-STADIUS), Leuven, Belgium", 
            "IMT School for Advanced Studies Lucca, Lucca, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Latafat", 
        "givenName": "Puya", 
        "id": "sg:person.014617546267.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014617546267.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "KU Leuven", 
          "id": "https://www.grid.ac/institutes/grid.5596.f", 
          "name": [
            "KU Leuven, Department of Electrical Engineering (ESAT-STADIUS), Leuven, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Patrinos", 
        "givenName": "Panagiotis", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10851-010-0251-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010318529", 
          "https://doi.org/10.1007/s10851-010-0251-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10107-015-0957-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012909932", 
          "https://doi.org/10.1007/s10107-015-0957-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10957-008-9393-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016709296", 
          "https://doi.org/10.1007/s10957-008-9393-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10444-011-9254-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017372143", 
          "https://doi.org/10.1007/s10444-011-9254-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1022362018", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-87821-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022362018", 
          "https://doi.org/10.1007/978-0-387-87821-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-87821-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022362018", 
          "https://doi.org/10.1007/978-0-387-87821-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10957-012-0245-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027180321", 
          "https://doi.org/10.1007/s10957-012-0245-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.orl.2015.02.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032013942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10107-016-1044-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036311274", 
          "https://doi.org/10.1007/s10107-016-1044-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10107-016-1044-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036311274", 
          "https://doi.org/10.1007/s10107-016-1044-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11228-011-0191-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037327416", 
          "https://doi.org/10.1007/s11228-011-0191-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1044558790", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4419-9467-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044558790", 
          "https://doi.org/10.1007/978-1-4419-9467-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4419-9467-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044558790", 
          "https://doi.org/10.1007/978-1-4419-9467-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10107-015-0964-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047229212", 
          "https://doi.org/10.1007/s10107-015-0964-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/msp.2014.2377273", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061424211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/09076934x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062856631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/100814494", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062859660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/10081602x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062859709"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/120901106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062870182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/130950616", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062871692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/151003076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062873232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1561/2200000016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068001405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10589-017-9909-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084518461", 
          "https://doi.org/10.1007/s10589-017-9909-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10589-017-9909-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084518461", 
          "https://doi.org/10.1007/s10589-017-9909-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cdc.2016.7798551", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095342882"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-11-12", 
    "datePublishedReg": "2018-11-12", 
    "description": "We present a simple primal-dual framework for solving structured convex optimization problems involving the sum of a Lipschitz-differentiable function and two nonsmooth proximable functions, one of which is composed with a linear mapping. The framework is based on the recently proposed asymmetric forward-backward-adjoint three-term splitting (AFBA); depending on the value of two parameters, (extensions of) known algorithms as well as many new primal-dual schemes are obtained. This allows for a unified analysis that, among other things, establishes linear convergence under four different regularity assumptions for the cost functions. Most notably, linear convergence is established for the class of problems with piecewise linear-quadratic cost functions.", 
    "editor": [
      {
        "familyName": "Giselsson", 
        "givenName": "Pontus", 
        "type": "Person"
      }, 
      {
        "familyName": "Rantzer", 
        "givenName": "Anders", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-97478-1_5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-97477-4", 
        "978-3-319-97478-1"
      ], 
      "name": "Large-Scale and Distributed Optimization", 
      "type": "Book"
    }, 
    "name": "Primal-Dual Proximal Algorithms for Structured Convex Optimization: A Unifying Framework", 
    "pagination": "97-120", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-97478-1_5"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1af13bd97bab4df53075cd45486d6be15f43093f7d2b5123167fc8d20c1f7d0b"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1109852631"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-97478-1_5", 
      "https://app.dimensions.ai/details/publication/pub.1109852631"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T04:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000325_0000000325/records_100783_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-319-97478-1_5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-97478-1_5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-97478-1_5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-97478-1_5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-97478-1_5'


 

This table displays all metadata directly associated to this object as RDF triples.

158 TRIPLES      23 PREDICATES      49 URIs      19 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-97478-1_5 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N33d0c86be3f842a2a1bc635048593dd9
4 schema:citation sg:pub.10.1007/978-0-387-87821-8
5 sg:pub.10.1007/978-1-4419-9467-7
6 sg:pub.10.1007/s10107-015-0957-3
7 sg:pub.10.1007/s10107-015-0964-4
8 sg:pub.10.1007/s10107-016-1044-0
9 sg:pub.10.1007/s10444-011-9254-8
10 sg:pub.10.1007/s10589-017-9909-6
11 sg:pub.10.1007/s10851-010-0251-1
12 sg:pub.10.1007/s10957-008-9393-3
13 sg:pub.10.1007/s10957-012-0245-9
14 sg:pub.10.1007/s11228-011-0191-y
15 https://app.dimensions.ai/details/publication/pub.1022362018
16 https://app.dimensions.ai/details/publication/pub.1044558790
17 https://doi.org/10.1016/j.orl.2015.02.001
18 https://doi.org/10.1109/cdc.2016.7798551
19 https://doi.org/10.1109/msp.2014.2377273
20 https://doi.org/10.1137/09076934x
21 https://doi.org/10.1137/100814494
22 https://doi.org/10.1137/10081602x
23 https://doi.org/10.1137/120901106
24 https://doi.org/10.1137/130950616
25 https://doi.org/10.1137/151003076
26 https://doi.org/10.1561/2200000016
27 schema:datePublished 2018-11-12
28 schema:datePublishedReg 2018-11-12
29 schema:description We present a simple primal-dual framework for solving structured convex optimization problems involving the sum of a Lipschitz-differentiable function and two nonsmooth proximable functions, one of which is composed with a linear mapping. The framework is based on the recently proposed asymmetric forward-backward-adjoint three-term splitting (AFBA); depending on the value of two parameters, (extensions of) known algorithms as well as many new primal-dual schemes are obtained. This allows for a unified analysis that, among other things, establishes linear convergence under four different regularity assumptions for the cost functions. Most notably, linear convergence is established for the class of problems with piecewise linear-quadratic cost functions.
30 schema:editor N09e1d439ef134f45ad78137f92fe38ef
31 schema:genre chapter
32 schema:inLanguage en
33 schema:isAccessibleForFree false
34 schema:isPartOf Nb9ba710b9b3f4f78b068e2f01c584d51
35 schema:name Primal-Dual Proximal Algorithms for Structured Convex Optimization: A Unifying Framework
36 schema:pagination 97-120
37 schema:productId N0a396d876b454bd198c4fdbfc181ab27
38 N1e7de6f6629f49d4af32260aace98c64
39 N59238c222cb34f30ae3666c55a9f8db2
40 schema:publisher Nc62d512b61b64caf901c3bf75c428c32
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109852631
42 https://doi.org/10.1007/978-3-319-97478-1_5
43 schema:sdDatePublished 2019-04-16T04:59
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher N48266d7103434376a498427f3a2182f5
46 schema:url https://link.springer.com/10.1007%2F978-3-319-97478-1_5
47 sgo:license sg:explorer/license/
48 sgo:sdDataset chapters
49 rdf:type schema:Chapter
50 N09e1d439ef134f45ad78137f92fe38ef rdf:first N09ed030b71e0469e82fe5d5bf44f8e4e
51 rdf:rest N7c50c53f8df247a89d58a2298a37adf9
52 N09ed030b71e0469e82fe5d5bf44f8e4e schema:familyName Giselsson
53 schema:givenName Pontus
54 rdf:type schema:Person
55 N0a396d876b454bd198c4fdbfc181ab27 schema:name readcube_id
56 schema:value 1af13bd97bab4df53075cd45486d6be15f43093f7d2b5123167fc8d20c1f7d0b
57 rdf:type schema:PropertyValue
58 N1e7de6f6629f49d4af32260aace98c64 schema:name doi
59 schema:value 10.1007/978-3-319-97478-1_5
60 rdf:type schema:PropertyValue
61 N30296fd145ba4dec841849c7477a9e51 schema:affiliation https://www.grid.ac/institutes/grid.5596.f
62 schema:familyName Patrinos
63 schema:givenName Panagiotis
64 rdf:type schema:Person
65 N33d0c86be3f842a2a1bc635048593dd9 rdf:first sg:person.014617546267.35
66 rdf:rest Ne88f59aa218e4690872fc38c6bf4ef42
67 N48266d7103434376a498427f3a2182f5 schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 N507bc5ac681d46b6bae5c241fddd5e83 schema:familyName Rantzer
70 schema:givenName Anders
71 rdf:type schema:Person
72 N59238c222cb34f30ae3666c55a9f8db2 schema:name dimensions_id
73 schema:value pub.1109852631
74 rdf:type schema:PropertyValue
75 N7c50c53f8df247a89d58a2298a37adf9 rdf:first N507bc5ac681d46b6bae5c241fddd5e83
76 rdf:rest rdf:nil
77 Nb9ba710b9b3f4f78b068e2f01c584d51 schema:isbn 978-3-319-97477-4
78 978-3-319-97478-1
79 schema:name Large-Scale and Distributed Optimization
80 rdf:type schema:Book
81 Nc62d512b61b64caf901c3bf75c428c32 schema:location Cham
82 schema:name Springer International Publishing
83 rdf:type schema:Organisation
84 Ne88f59aa218e4690872fc38c6bf4ef42 rdf:first N30296fd145ba4dec841849c7477a9e51
85 rdf:rest rdf:nil
86 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
87 schema:name Mathematical Sciences
88 rdf:type schema:DefinedTerm
89 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
90 schema:name Numerical and Computational Mathematics
91 rdf:type schema:DefinedTerm
92 sg:person.014617546267.35 schema:affiliation https://www.grid.ac/institutes/grid.462365.0
93 schema:familyName Latafat
94 schema:givenName Puya
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014617546267.35
96 rdf:type schema:Person
97 sg:pub.10.1007/978-0-387-87821-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022362018
98 https://doi.org/10.1007/978-0-387-87821-8
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/978-1-4419-9467-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044558790
101 https://doi.org/10.1007/978-1-4419-9467-7
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/s10107-015-0957-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012909932
104 https://doi.org/10.1007/s10107-015-0957-3
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/s10107-015-0964-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047229212
107 https://doi.org/10.1007/s10107-015-0964-4
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/s10107-016-1044-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036311274
110 https://doi.org/10.1007/s10107-016-1044-0
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/s10444-011-9254-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017372143
113 https://doi.org/10.1007/s10444-011-9254-8
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/s10589-017-9909-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084518461
116 https://doi.org/10.1007/s10589-017-9909-6
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/s10851-010-0251-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010318529
119 https://doi.org/10.1007/s10851-010-0251-1
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/s10957-008-9393-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016709296
122 https://doi.org/10.1007/s10957-008-9393-3
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/s10957-012-0245-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027180321
125 https://doi.org/10.1007/s10957-012-0245-9
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/s11228-011-0191-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1037327416
128 https://doi.org/10.1007/s11228-011-0191-y
129 rdf:type schema:CreativeWork
130 https://app.dimensions.ai/details/publication/pub.1022362018 schema:CreativeWork
131 https://app.dimensions.ai/details/publication/pub.1044558790 schema:CreativeWork
132 https://doi.org/10.1016/j.orl.2015.02.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032013942
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1109/cdc.2016.7798551 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095342882
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1109/msp.2014.2377273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061424211
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1137/09076934x schema:sameAs https://app.dimensions.ai/details/publication/pub.1062856631
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1137/100814494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062859660
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1137/10081602x schema:sameAs https://app.dimensions.ai/details/publication/pub.1062859709
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1137/120901106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062870182
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1137/130950616 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062871692
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1137/151003076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062873232
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1561/2200000016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068001405
151 rdf:type schema:CreativeWork
152 https://www.grid.ac/institutes/grid.462365.0 schema:alternateName IMT Institute for Advanced Studies Lucca
153 schema:name IMT School for Advanced Studies Lucca, Lucca, Italy
154 KU Leuven, Department of Electrical Engineering (ESAT-STADIUS), Leuven, Belgium
155 rdf:type schema:Organization
156 https://www.grid.ac/institutes/grid.5596.f schema:alternateName KU Leuven
157 schema:name KU Leuven, Department of Electrical Engineering (ESAT-STADIUS), Leuven, Belgium
158 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...