Simulated Annealing Method for Metal Nanoparticle Structures Optimization View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018-09-28

AUTHORS

Vladimir Myasnichenko , Leoneed Kirilov , Rossen Mikhov , Stefka Fidanova , Nikolay Sdobnyakov

ABSTRACT

The goal of this paper is to develop an efficient method to search for metal and bimetal nanoparticle structures with the lowest possible potential energy. This is a global optimization problem. In computational complexity theory, global optimization problems are NP-hard, meaning that they cannot be solved in polynomial time. Because of the severe difficulty of finding the global minimum, the simulated annealing algorithm was selected as main strategy. At the first step we use the lattice Monte Carlo method with different lattices. Then we relax the resulting nanoparticle structures at low temperature within molecular dynamics, choosing one of them as approximation of the global minimum. The numerical solution of an optimal cluster structure of Ag (200) shows the efficiency of the proposed method. More... »

PAGES

277-289

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-97277-0_23

DOI

http://dx.doi.org/10.1007/978-3-319-97277-0_23

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107272539


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tver State University, Tver, Russia", 
          "id": "http://www.grid.ac/institutes/grid.438242.b", 
          "name": [
            "Tver State University, Tver, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Myasnichenko", 
        "givenName": "Vladimir", 
        "id": "sg:person.013562762060.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013562762060.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Information and Communication Technologies\u2014Bulgarian Academy of Sciences, Sofia, Bulgaria", 
          "id": "http://www.grid.ac/institutes/grid.424988.b", 
          "name": [
            "Institute of Information and Communication Technologies\u2014Bulgarian Academy of Sciences, Sofia, Bulgaria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kirilov", 
        "givenName": "Leoneed", 
        "id": "sg:person.015700215743.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015700215743.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Information and Communication Technologies\u2014Bulgarian Academy of Sciences, Sofia, Bulgaria", 
          "id": "http://www.grid.ac/institutes/grid.424988.b", 
          "name": [
            "Institute of Information and Communication Technologies\u2014Bulgarian Academy of Sciences, Sofia, Bulgaria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mikhov", 
        "givenName": "Rossen", 
        "id": "sg:person.014434131110.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014434131110.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Information and Communication Technologies\u2014Bulgarian Academy of Sciences, Sofia, Bulgaria", 
          "id": "http://www.grid.ac/institutes/grid.424988.b", 
          "name": [
            "Institute of Information and Communication Technologies\u2014Bulgarian Academy of Sciences, Sofia, Bulgaria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fidanova", 
        "givenName": "Stefka", 
        "id": "sg:person.011173106320.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011173106320.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tver State University, Tver, Russia", 
          "id": "http://www.grid.ac/institutes/grid.438242.b", 
          "name": [
            "Tver State University, Tver, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sdobnyakov", 
        "givenName": "Nikolay", 
        "id": "sg:person.015175741710.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015175741710.55"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2018-09-28", 
    "datePublishedReg": "2018-09-28", 
    "description": "The goal of this paper is to develop an efficient method to search for metal and bimetal nanoparticle structures with the lowest possible potential energy. This is a global optimization problem. In computational complexity theory, global optimization problems are NP-hard, meaning that they cannot be solved in polynomial time. Because of the severe difficulty of finding the global minimum, the simulated annealing algorithm was selected as main strategy. At the first step we use the lattice Monte Carlo method with different lattices. Then we relax the resulting nanoparticle structures at low temperature within molecular dynamics, choosing one of them as approximation of the global minimum. The numerical solution of an optimal cluster structure of Ag (200) shows the efficiency of the proposed method.", 
    "editor": [
      {
        "familyName": "Georgiev", 
        "givenName": "Krassimir", 
        "type": "Person"
      }, 
      {
        "familyName": "Todorov", 
        "givenName": "Michail", 
        "type": "Person"
      }, 
      {
        "familyName": "Georgiev", 
        "givenName": "Ivan", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-97277-0_23", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-97276-3", 
        "978-3-319-97277-0"
      ], 
      "name": "Advanced Computing in Industrial Mathematics", 
      "type": "Book"
    }, 
    "keywords": [
      "global optimization problems", 
      "optimization problem", 
      "computational complexity theory", 
      "global minimum", 
      "optimal cluster structure", 
      "Monte Carlo method", 
      "lattice Monte Carlo method", 
      "numerical solution", 
      "Carlo method", 
      "different lattices", 
      "complexity theory", 
      "annealing algorithm", 
      "polynomial time", 
      "structure optimization", 
      "cluster structure", 
      "annealing method", 
      "potential energy", 
      "efficient method", 
      "approximation", 
      "problem", 
      "molecular dynamics", 
      "lattice", 
      "low temperature", 
      "optimization", 
      "theory", 
      "minimum", 
      "algorithm", 
      "dynamics", 
      "severe difficulties", 
      "solution", 
      "structure", 
      "nanoparticle structure", 
      "first step", 
      "NPs", 
      "energy", 
      "efficiency", 
      "step", 
      "temperature", 
      "difficulties", 
      "time", 
      "goal", 
      "main strategies", 
      "strategies", 
      "metals", 
      "Ag", 
      "method", 
      "paper"
    ], 
    "name": "Simulated Annealing Method for Metal Nanoparticle Structures Optimization", 
    "pagination": "277-289", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107272539"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-97277-0_23"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-97277-0_23", 
      "https://app.dimensions.ai/details/publication/pub.1107272539"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-10T10:41", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/chapter/chapter_193.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-97277-0_23"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-97277-0_23'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-97277-0_23'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-97277-0_23'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-97277-0_23'


 

This table displays all metadata directly associated to this object as RDF triples.

148 TRIPLES      23 PREDICATES      72 URIs      65 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-97277-0_23 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N876e440c9cfc44db8a4b023ba007fa45
4 schema:datePublished 2018-09-28
5 schema:datePublishedReg 2018-09-28
6 schema:description The goal of this paper is to develop an efficient method to search for metal and bimetal nanoparticle structures with the lowest possible potential energy. This is a global optimization problem. In computational complexity theory, global optimization problems are NP-hard, meaning that they cannot be solved in polynomial time. Because of the severe difficulty of finding the global minimum, the simulated annealing algorithm was selected as main strategy. At the first step we use the lattice Monte Carlo method with different lattices. Then we relax the resulting nanoparticle structures at low temperature within molecular dynamics, choosing one of them as approximation of the global minimum. The numerical solution of an optimal cluster structure of Ag (200) shows the efficiency of the proposed method.
7 schema:editor Nb935d9fe950447a190811dc41cb53205
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Nfa2751a7efda4ff883852269b168a181
12 schema:keywords Ag
13 Carlo method
14 Monte Carlo method
15 NPs
16 algorithm
17 annealing algorithm
18 annealing method
19 approximation
20 cluster structure
21 complexity theory
22 computational complexity theory
23 different lattices
24 difficulties
25 dynamics
26 efficiency
27 efficient method
28 energy
29 first step
30 global minimum
31 global optimization problems
32 goal
33 lattice
34 lattice Monte Carlo method
35 low temperature
36 main strategies
37 metals
38 method
39 minimum
40 molecular dynamics
41 nanoparticle structure
42 numerical solution
43 optimal cluster structure
44 optimization
45 optimization problem
46 paper
47 polynomial time
48 potential energy
49 problem
50 severe difficulties
51 solution
52 step
53 strategies
54 structure
55 structure optimization
56 temperature
57 theory
58 time
59 schema:name Simulated Annealing Method for Metal Nanoparticle Structures Optimization
60 schema:pagination 277-289
61 schema:productId N9bad1202557a4736a0417b4cb4c7206e
62 Ne818d4f8f9fc4b06a189838efb072fcb
63 schema:publisher Na2fb2b910573478c97613bd1195934e4
64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107272539
65 https://doi.org/10.1007/978-3-319-97277-0_23
66 schema:sdDatePublished 2022-05-10T10:41
67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
68 schema:sdPublisher Na3476968bc634b738d33035d1d38579c
69 schema:url https://doi.org/10.1007/978-3-319-97277-0_23
70 sgo:license sg:explorer/license/
71 sgo:sdDataset chapters
72 rdf:type schema:Chapter
73 N215fc7148fab45f6a81d3aed1d4e6046 schema:familyName Georgiev
74 schema:givenName Krassimir
75 rdf:type schema:Person
76 N412c7b41626247ff9d1decf62b450559 rdf:first N932bde35a17a4159a6eb3119d6cd6d08
77 rdf:rest N711a0f9fd6d5473a87d88a18ba75c9b7
78 N49611559d4c245eebec0c88d97b2c9cc rdf:first sg:person.015700215743.52
79 rdf:rest Nfb4ac23833c0445ebc59234d319de0ae
80 N711a0f9fd6d5473a87d88a18ba75c9b7 rdf:first Nf88e2972be5e48868f84fa10507d3d3e
81 rdf:rest rdf:nil
82 N876e440c9cfc44db8a4b023ba007fa45 rdf:first sg:person.013562762060.25
83 rdf:rest N49611559d4c245eebec0c88d97b2c9cc
84 N932bde35a17a4159a6eb3119d6cd6d08 schema:familyName Todorov
85 schema:givenName Michail
86 rdf:type schema:Person
87 N9bad1202557a4736a0417b4cb4c7206e schema:name dimensions_id
88 schema:value pub.1107272539
89 rdf:type schema:PropertyValue
90 Na2fb2b910573478c97613bd1195934e4 schema:name Springer Nature
91 rdf:type schema:Organisation
92 Na3476968bc634b738d33035d1d38579c schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 Na3b83421c9ad436f9aefc89f70f3ee79 rdf:first sg:person.015175741710.55
95 rdf:rest rdf:nil
96 Nb935d9fe950447a190811dc41cb53205 rdf:first N215fc7148fab45f6a81d3aed1d4e6046
97 rdf:rest N412c7b41626247ff9d1decf62b450559
98 Ncb4f0778cf8b4f64bb63a5bafa01ad41 rdf:first sg:person.011173106320.18
99 rdf:rest Na3b83421c9ad436f9aefc89f70f3ee79
100 Ne818d4f8f9fc4b06a189838efb072fcb schema:name doi
101 schema:value 10.1007/978-3-319-97277-0_23
102 rdf:type schema:PropertyValue
103 Nf88e2972be5e48868f84fa10507d3d3e schema:familyName Georgiev
104 schema:givenName Ivan
105 rdf:type schema:Person
106 Nfa2751a7efda4ff883852269b168a181 schema:isbn 978-3-319-97276-3
107 978-3-319-97277-0
108 schema:name Advanced Computing in Industrial Mathematics
109 rdf:type schema:Book
110 Nfb4ac23833c0445ebc59234d319de0ae rdf:first sg:person.014434131110.58
111 rdf:rest Ncb4f0778cf8b4f64bb63a5bafa01ad41
112 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
113 schema:name Mathematical Sciences
114 rdf:type schema:DefinedTerm
115 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
116 schema:name Numerical and Computational Mathematics
117 rdf:type schema:DefinedTerm
118 sg:person.011173106320.18 schema:affiliation grid-institutes:grid.424988.b
119 schema:familyName Fidanova
120 schema:givenName Stefka
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011173106320.18
122 rdf:type schema:Person
123 sg:person.013562762060.25 schema:affiliation grid-institutes:grid.438242.b
124 schema:familyName Myasnichenko
125 schema:givenName Vladimir
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013562762060.25
127 rdf:type schema:Person
128 sg:person.014434131110.58 schema:affiliation grid-institutes:grid.424988.b
129 schema:familyName Mikhov
130 schema:givenName Rossen
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014434131110.58
132 rdf:type schema:Person
133 sg:person.015175741710.55 schema:affiliation grid-institutes:grid.438242.b
134 schema:familyName Sdobnyakov
135 schema:givenName Nikolay
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015175741710.55
137 rdf:type schema:Person
138 sg:person.015700215743.52 schema:affiliation grid-institutes:grid.424988.b
139 schema:familyName Kirilov
140 schema:givenName Leoneed
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015700215743.52
142 rdf:type schema:Person
143 grid-institutes:grid.424988.b schema:alternateName Institute of Information and Communication Technologies—Bulgarian Academy of Sciences, Sofia, Bulgaria
144 schema:name Institute of Information and Communication Technologies—Bulgarian Academy of Sciences, Sofia, Bulgaria
145 rdf:type schema:Organization
146 grid-institutes:grid.438242.b schema:alternateName Tver State University, Tver, Russia
147 schema:name Tver State University, Tver, Russia
148 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...