Ontology type: schema:Chapter
2018-09-28
AUTHORSKristina G. Kapanova , Stefka Fidanova
ABSTRACTIn the last few years the micro-blogging platform Twitter has played a significant role in the communication of civil uprisings, political events or natural disasters. One of the reasons is the adoption of the hashtag, which represents a short word or phrase that follows the hash sign (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\#$$\end{document}). These semantic elements captured the topics behind the tweets and allowed the information flow to bypass traditional social network structure. The hashtags provide a way for users to embed metadata in their posts achieving several important communicative functions: they can indicate the specific semantic domain of the post, link the post to an existing topic, or provide a range of complex meanings in social media texts. In this paper, Generalized nets are applied as a tool to model the structural characteristics of a hashtag linguistic network through which possible communities of interests emerge, and to investigate the information propagation patterns resulting from the uncoordinated actions of users in the underlying semantic hashtag space. Generalized nets (GN) are extensions of the Petri nets by providing functional and topological aspects unavailable in Petri nets. The study of hashtag networks from a generalized nets perspective enables us to investigate in a deeper manner each element of the GN, substituting it with another, more detailed network in order to be examined in depth. The result is an improved understanding of topological connections of the data and the ability to dynamically add new details to expand the network and as a result discover underlying structural complexities unable to be discovered through traditional network analysis tool due to the prohibitive computational cost. Analysis is performed on a collection of Tweets and results are presented. More... »
PAGES211-221
Advanced Computing in Industrial Mathematics
ISBN
978-3-319-97276-3
978-3-319-97277-0
http://scigraph.springernature.com/pub.10.1007/978-3-319-97277-0_17
DOIhttp://dx.doi.org/10.1007/978-3-319-97277-0_17
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1107272532
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information Systems",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Institute of Information and Communication Technology, Bulgarian Academy of Science, Sofia, Bulgaria",
"id": "http://www.grid.ac/institutes/grid.410344.6",
"name": [
"Institute of Information and Communication Technology, Bulgarian Academy of Science, Sofia, Bulgaria"
],
"type": "Organization"
},
"familyName": "Kapanova",
"givenName": "Kristina G.",
"id": "sg:person.014360705307.39",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014360705307.39"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute of Information and Communication Technology, Bulgarian Academy of Science, Sofia, Bulgaria",
"id": "http://www.grid.ac/institutes/grid.410344.6",
"name": [
"Institute of Information and Communication Technology, Bulgarian Academy of Science, Sofia, Bulgaria"
],
"type": "Organization"
},
"familyName": "Fidanova",
"givenName": "Stefka",
"id": "sg:person.011173106320.18",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011173106320.18"
],
"type": "Person"
}
],
"datePublished": "2018-09-28",
"datePublishedReg": "2018-09-28",
"description": "In the last few years the micro-blogging platform Twitter has played a significant role in the communication of civil uprisings, political events or natural disasters. One of the reasons is the adoption of the hashtag, which represents a short word or phrase that follows the hash sign (\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\#$$\\end{document}). These semantic elements captured the topics behind the tweets and allowed the information flow to bypass traditional social network structure. The hashtags provide a way for users to embed metadata in their posts achieving several important communicative functions: they can indicate the specific semantic domain of the post, link the post to an existing topic, or provide a range of complex meanings in social media texts. In this paper, Generalized nets are applied as a tool to model the structural characteristics of a hashtag linguistic network through which possible communities of interests emerge, and to investigate the information propagation patterns resulting from the uncoordinated actions of users in the underlying semantic hashtag space. Generalized nets (GN) are extensions of the Petri nets by providing functional and topological aspects unavailable in Petri nets. The study of hashtag networks from a generalized nets perspective enables us to investigate in a deeper manner each element of the GN, substituting it with another, more detailed network in order to be examined in depth. The result is an improved understanding of topological connections of the data and the ability to dynamically add new details to expand the network and as a result discover underlying structural complexities unable to be discovered through traditional network analysis tool due to the prohibitive computational cost. Analysis is performed on a collection of Tweets and results are presented.",
"editor": [
{
"familyName": "Georgiev",
"givenName": "Krassimir",
"type": "Person"
},
{
"familyName": "Todorov",
"givenName": "Michail",
"type": "Person"
},
{
"familyName": "Georgiev",
"givenName": "Ivan",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-319-97277-0_17",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-319-97276-3",
"978-3-319-97277-0"
],
"name": "Advanced Computing in Industrial Mathematics",
"type": "Book"
},
"keywords": [
"linguistic networks",
"social media text",
"specific semantic domains",
"micro-blogging platform Twitter",
"information propagation patterns",
"important communicative functions",
"collection of tweets",
"media texts",
"hashtag networks",
"platform Twitter",
"complex meanings",
"communicative functions",
"semantic domain",
"political events",
"semantic elements",
"short words",
"possible community",
"hashtags",
"Twitter",
"civil uprising",
"tweets",
"post",
"social network structure",
"uncoordinated actions",
"text",
"deep manner",
"phrases",
"meaning",
"words",
"topic",
"uprising",
"communication",
"perspective",
"way",
"community",
"topological connections",
"network analysis tools",
"metadata",
"significant role",
"users",
"space",
"connection",
"understanding",
"aspects",
"Generalized Nets",
"collection",
"natural disasters",
"elements",
"new details",
"interest",
"tool",
"reasons",
"complexity",
"adoption",
"disasters",
"role",
"analysis tools",
"signs",
"events",
"paper",
"structural complexity",
"network",
"detailed network",
"approach",
"order",
"action",
"new approach",
"information",
"study",
"analysis",
"nets",
"domain",
"years",
"detail",
"manner",
"ability",
"patterns",
"extension",
"topological aspects",
"structure",
"Petri nets",
"results",
"prohibitive computational cost",
"structural characteristics",
"propagation patterns",
"data",
"network structure",
"range",
"characteristics",
"depth",
"function",
"improved understanding",
"cost",
"computational cost"
],
"name": "Generalized Nets: A New Approach to Model a Hashtag Linguistic Network on Twitter",
"pagination": "211-221",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1107272532"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-319-97277-0_17"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-319-97277-0_17",
"https://app.dimensions.ai/details/publication/pub.1107272532"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-10T10:48",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/chapter/chapter_356.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-319-97277-0_17"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-97277-0_17'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-97277-0_17'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-97277-0_17'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-97277-0_17'
This table displays all metadata directly associated to this object as RDF triples.
171 TRIPLES
23 PREDICATES
119 URIs
112 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-319-97277-0_17 | schema:about | anzsrc-for:08 |
2 | ″ | ″ | anzsrc-for:0806 |
3 | ″ | schema:author | Nf3760a0e2a4b4b9ca00371997023c569 |
4 | ″ | schema:datePublished | 2018-09-28 |
5 | ″ | schema:datePublishedReg | 2018-09-28 |
6 | ″ | schema:description | In the last few years the micro-blogging platform Twitter has played a significant role in the communication of civil uprisings, political events or natural disasters. One of the reasons is the adoption of the hashtag, which represents a short word or phrase that follows the hash sign (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\#$$\end{document}). These semantic elements captured the topics behind the tweets and allowed the information flow to bypass traditional social network structure. The hashtags provide a way for users to embed metadata in their posts achieving several important communicative functions: they can indicate the specific semantic domain of the post, link the post to an existing topic, or provide a range of complex meanings in social media texts. In this paper, Generalized nets are applied as a tool to model the structural characteristics of a hashtag linguistic network through which possible communities of interests emerge, and to investigate the information propagation patterns resulting from the uncoordinated actions of users in the underlying semantic hashtag space. Generalized nets (GN) are extensions of the Petri nets by providing functional and topological aspects unavailable in Petri nets. The study of hashtag networks from a generalized nets perspective enables us to investigate in a deeper manner each element of the GN, substituting it with another, more detailed network in order to be examined in depth. The result is an improved understanding of topological connections of the data and the ability to dynamically add new details to expand the network and as a result discover underlying structural complexities unable to be discovered through traditional network analysis tool due to the prohibitive computational cost. Analysis is performed on a collection of Tweets and results are presented. |
7 | ″ | schema:editor | N7e93cb98ff004118ae47b0d3115f9fbe |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | Nc393236fbb7c4e869c9ff54d25310636 |
12 | ″ | schema:keywords | Generalized Nets |
13 | ″ | ″ | Petri nets |
14 | ″ | ″ | |
15 | ″ | ″ | ability |
16 | ″ | ″ | action |
17 | ″ | ″ | adoption |
18 | ″ | ″ | analysis |
19 | ″ | ″ | analysis tools |
20 | ″ | ″ | approach |
21 | ″ | ″ | aspects |
22 | ″ | ″ | characteristics |
23 | ″ | ″ | civil uprising |
24 | ″ | ″ | collection |
25 | ″ | ″ | collection of tweets |
26 | ″ | ″ | communication |
27 | ″ | ″ | communicative functions |
28 | ″ | ″ | community |
29 | ″ | ″ | complex meanings |
30 | ″ | ″ | complexity |
31 | ″ | ″ | computational cost |
32 | ″ | ″ | connection |
33 | ″ | ″ | cost |
34 | ″ | ″ | data |
35 | ″ | ″ | deep manner |
36 | ″ | ″ | depth |
37 | ″ | ″ | detail |
38 | ″ | ″ | detailed network |
39 | ″ | ″ | disasters |
40 | ″ | ″ | domain |
41 | ″ | ″ | elements |
42 | ″ | ″ | events |
43 | ″ | ″ | extension |
44 | ″ | ″ | function |
45 | ″ | ″ | hashtag networks |
46 | ″ | ″ | hashtags |
47 | ″ | ″ | important communicative functions |
48 | ″ | ″ | improved understanding |
49 | ″ | ″ | information |
50 | ″ | ″ | information propagation patterns |
51 | ″ | ″ | interest |
52 | ″ | ″ | linguistic networks |
53 | ″ | ″ | manner |
54 | ″ | ″ | meaning |
55 | ″ | ″ | media texts |
56 | ″ | ″ | metadata |
57 | ″ | ″ | micro-blogging platform Twitter |
58 | ″ | ″ | natural disasters |
59 | ″ | ″ | nets |
60 | ″ | ″ | network |
61 | ″ | ″ | network analysis tools |
62 | ″ | ″ | network structure |
63 | ″ | ″ | new approach |
64 | ″ | ″ | new details |
65 | ″ | ″ | order |
66 | ″ | ″ | paper |
67 | ″ | ″ | patterns |
68 | ″ | ″ | perspective |
69 | ″ | ″ | phrases |
70 | ″ | ″ | platform Twitter |
71 | ″ | ″ | political events |
72 | ″ | ″ | possible community |
73 | ″ | ″ | post |
74 | ″ | ″ | prohibitive computational cost |
75 | ″ | ″ | propagation patterns |
76 | ″ | ″ | range |
77 | ″ | ″ | reasons |
78 | ″ | ″ | results |
79 | ″ | ″ | role |
80 | ″ | ″ | semantic domain |
81 | ″ | ″ | semantic elements |
82 | ″ | ″ | short words |
83 | ″ | ″ | significant role |
84 | ″ | ″ | signs |
85 | ″ | ″ | social media text |
86 | ″ | ″ | social network structure |
87 | ″ | ″ | space |
88 | ″ | ″ | specific semantic domains |
89 | ″ | ″ | structural characteristics |
90 | ″ | ″ | structural complexity |
91 | ″ | ″ | structure |
92 | ″ | ″ | study |
93 | ″ | ″ | text |
94 | ″ | ″ | tool |
95 | ″ | ″ | topic |
96 | ″ | ″ | topological aspects |
97 | ″ | ″ | topological connections |
98 | ″ | ″ | tweets |
99 | ″ | ″ | uncoordinated actions |
100 | ″ | ″ | understanding |
101 | ″ | ″ | uprising |
102 | ″ | ″ | users |
103 | ″ | ″ | way |
104 | ″ | ″ | words |
105 | ″ | ″ | years |
106 | ″ | schema:name | Generalized Nets: A New Approach to Model a Hashtag Linguistic Network on Twitter |
107 | ″ | schema:pagination | 211-221 |
108 | ″ | schema:productId | Nb038277095844a35a562b68895e053e5 |
109 | ″ | ″ | Nc4bb156d39474b8f9c44a31e85acd173 |
110 | ″ | schema:publisher | Na809f15b4b114b2296875ce8c8b0b134 |
111 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1107272532 |
112 | ″ | ″ | https://doi.org/10.1007/978-3-319-97277-0_17 |
113 | ″ | schema:sdDatePublished | 2022-05-10T10:48 |
114 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
115 | ″ | schema:sdPublisher | Nb13ea3f5ec454f18abd40a6c534f288d |
116 | ″ | schema:url | https://doi.org/10.1007/978-3-319-97277-0_17 |
117 | ″ | sgo:license | sg:explorer/license/ |
118 | ″ | sgo:sdDataset | chapters |
119 | ″ | rdf:type | schema:Chapter |
120 | N30a54be7e24e4149930f180ed7e40839 | rdf:first | N9c873549be744c88b247876a09532019 |
121 | ″ | rdf:rest | rdf:nil |
122 | N749c7d2e7f9c4b5e84c0c0e891e6e926 | rdf:first | Nf10cb8a4f7c84b0d9550268db24e59a2 |
123 | ″ | rdf:rest | N30a54be7e24e4149930f180ed7e40839 |
124 | N7e93cb98ff004118ae47b0d3115f9fbe | rdf:first | N9c2c0e8e432c49aaa29b50d189e50304 |
125 | ″ | rdf:rest | N749c7d2e7f9c4b5e84c0c0e891e6e926 |
126 | N9c2c0e8e432c49aaa29b50d189e50304 | schema:familyName | Georgiev |
127 | ″ | schema:givenName | Krassimir |
128 | ″ | rdf:type | schema:Person |
129 | N9c873549be744c88b247876a09532019 | schema:familyName | Georgiev |
130 | ″ | schema:givenName | Ivan |
131 | ″ | rdf:type | schema:Person |
132 | Na809f15b4b114b2296875ce8c8b0b134 | schema:name | Springer Nature |
133 | ″ | rdf:type | schema:Organisation |
134 | Nb038277095844a35a562b68895e053e5 | schema:name | doi |
135 | ″ | schema:value | 10.1007/978-3-319-97277-0_17 |
136 | ″ | rdf:type | schema:PropertyValue |
137 | Nb13ea3f5ec454f18abd40a6c534f288d | schema:name | Springer Nature - SN SciGraph project |
138 | ″ | rdf:type | schema:Organization |
139 | Nc393236fbb7c4e869c9ff54d25310636 | schema:isbn | 978-3-319-97276-3 |
140 | ″ | ″ | 978-3-319-97277-0 |
141 | ″ | schema:name | Advanced Computing in Industrial Mathematics |
142 | ″ | rdf:type | schema:Book |
143 | Nc4bb156d39474b8f9c44a31e85acd173 | schema:name | dimensions_id |
144 | ″ | schema:value | pub.1107272532 |
145 | ″ | rdf:type | schema:PropertyValue |
146 | Nf0aeecaeeffa4dcb9398967f46c29086 | rdf:first | sg:person.011173106320.18 |
147 | ″ | rdf:rest | rdf:nil |
148 | Nf10cb8a4f7c84b0d9550268db24e59a2 | schema:familyName | Todorov |
149 | ″ | schema:givenName | Michail |
150 | ″ | rdf:type | schema:Person |
151 | Nf3760a0e2a4b4b9ca00371997023c569 | rdf:first | sg:person.014360705307.39 |
152 | ″ | rdf:rest | Nf0aeecaeeffa4dcb9398967f46c29086 |
153 | anzsrc-for:08 | schema:inDefinedTermSet | anzsrc-for: |
154 | ″ | schema:name | Information and Computing Sciences |
155 | ″ | rdf:type | schema:DefinedTerm |
156 | anzsrc-for:0806 | schema:inDefinedTermSet | anzsrc-for: |
157 | ″ | schema:name | Information Systems |
158 | ″ | rdf:type | schema:DefinedTerm |
159 | sg:person.011173106320.18 | schema:affiliation | grid-institutes:grid.410344.6 |
160 | ″ | schema:familyName | Fidanova |
161 | ″ | schema:givenName | Stefka |
162 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011173106320.18 |
163 | ″ | rdf:type | schema:Person |
164 | sg:person.014360705307.39 | schema:affiliation | grid-institutes:grid.410344.6 |
165 | ″ | schema:familyName | Kapanova |
166 | ″ | schema:givenName | Kristina G. |
167 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014360705307.39 |
168 | ″ | rdf:type | schema:Person |
169 | grid-institutes:grid.410344.6 | schema:alternateName | Institute of Information and Communication Technology, Bulgarian Academy of Science, Sofia, Bulgaria |
170 | ″ | schema:name | Institute of Information and Communication Technology, Bulgarian Academy of Science, Sofia, Bulgaria |
171 | ″ | rdf:type | schema:Organization |