Ant Colony Optimization Algorithm for Workforce Planning: Influence of the Algorithm Parameters View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018-09-28

AUTHORS

Stefka Fidanova , Olympia Roeva , Gabriel Luque

ABSTRACT

The workforce planning is a difficult optimization problem. It is important real life problem which helps organizations to determine workforce which they need. A workforce planning problem is very complex and needs special algorithms to be solved using reasonable computational resources. The problem consists to select set of employers from a set of available workers and to assign this staff to the tasks to be performed. The objective is to minimize the costs associated to the human resources needed to fulfil the work requirements. A good workforce planing is important for an organization to accomplish its objectives. The complexity of this problem does not allow the application of exact methods for instances of realistic size. Therefore we will apply Ant Colony Optimization (ACO) method which is a stochastic method for solving combinatorial optimization problems. On this paper we focus on influence of the parameters on ACO algorithm performance. More... »

PAGES

119-128

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-97277-0_10

DOI

http://dx.doi.org/10.1007/978-3-319-97277-0_10

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107272525


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Information and Communication Technology, Bulgarian Academy of Science, Sofia, Bulgaria", 
          "id": "http://www.grid.ac/institutes/grid.410344.6", 
          "name": [
            "Institute of Information and Communication Technology, Bulgarian Academy of Science, Sofia, Bulgaria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fidanova", 
        "givenName": "Stefka", 
        "id": "sg:person.011173106320.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011173106320.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Science, Sofia, Bulgaria", 
          "id": "http://www.grid.ac/institutes/grid.493309.4", 
          "name": [
            "Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Science, Sofia, Bulgaria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Roeva", 
        "givenName": "Olympia", 
        "id": "sg:person.015745057111.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015745057111.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "DLCS University of Mlaga, 29071, Mlaga, Spain", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "DLCS University of Mlaga, 29071, Mlaga, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Luque", 
        "givenName": "Gabriel", 
        "id": "sg:person.011334142553.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011334142553.21"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2018-09-28", 
    "datePublishedReg": "2018-09-28", 
    "description": "The workforce planning is a difficult optimization problem. It is important real life problem which helps organizations to determine workforce which they need. A workforce planning problem is very complex and needs special algorithms to be solved using reasonable computational resources. The problem consists to select set of employers from a set of available workers and to assign this staff to the tasks to be performed. The objective is to minimize the costs associated to the human resources needed to fulfil the work requirements. A good workforce planing is important for an organization to accomplish its objectives. The complexity of this problem does not allow the application of exact methods for instances of realistic size. Therefore we will apply Ant Colony Optimization (ACO) method which is a stochastic method for solving combinatorial optimization problems. On this paper we focus on influence of the parameters on ACO algorithm performance.", 
    "editor": [
      {
        "familyName": "Georgiev", 
        "givenName": "Krassimir", 
        "type": "Person"
      }, 
      {
        "familyName": "Todorov", 
        "givenName": "Michail", 
        "type": "Person"
      }, 
      {
        "familyName": "Georgiev", 
        "givenName": "Ivan", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-97277-0_10", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-97276-3", 
        "978-3-319-97277-0"
      ], 
      "name": "Advanced Computing in Industrial Mathematics", 
      "type": "Book"
    }, 
    "keywords": [
      "optimization problem", 
      "difficult optimization problems", 
      "combinatorial optimization problems", 
      "ACO algorithm performance", 
      "ant colony optimization method", 
      "ant colony optimization algorithm", 
      "reasonable computational resources", 
      "colony optimization algorithm", 
      "important real-life problem", 
      "stochastic method", 
      "workforce planning problem", 
      "real-life problems", 
      "optimization method", 
      "set of employers", 
      "optimization algorithm", 
      "exact method", 
      "planning problem", 
      "realistic size", 
      "computational resources", 
      "algorithm parameters", 
      "special algorithm", 
      "algorithm performance", 
      "available workers", 
      "problem", 
      "life problems", 
      "algorithm", 
      "parameters", 
      "set", 
      "resources", 
      "planning", 
      "task", 
      "complexity", 
      "human resources", 
      "requirements", 
      "method", 
      "instances", 
      "applications", 
      "organization", 
      "performance", 
      "cost", 
      "work requirements", 
      "objective", 
      "workforce planning", 
      "size", 
      "influence", 
      "staff", 
      "planing", 
      "workforce", 
      "workers", 
      "employers", 
      "paper"
    ], 
    "name": "Ant Colony Optimization Algorithm for Workforce Planning: Influence of the Algorithm Parameters", 
    "pagination": "119-128", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107272525"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-97277-0_10"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-97277-0_10", 
      "https://app.dimensions.ai/details/publication/pub.1107272525"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-10T10:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/chapter/chapter_322.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-97277-0_10"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-97277-0_10'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-97277-0_10'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-97277-0_10'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-97277-0_10'


 

This table displays all metadata directly associated to this object as RDF triples.

141 TRIPLES      23 PREDICATES      76 URIs      69 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-97277-0_10 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author Nebe7bf69afaf4cfba6e02c86db555cb5
4 schema:datePublished 2018-09-28
5 schema:datePublishedReg 2018-09-28
6 schema:description The workforce planning is a difficult optimization problem. It is important real life problem which helps organizations to determine workforce which they need. A workforce planning problem is very complex and needs special algorithms to be solved using reasonable computational resources. The problem consists to select set of employers from a set of available workers and to assign this staff to the tasks to be performed. The objective is to minimize the costs associated to the human resources needed to fulfil the work requirements. A good workforce planing is important for an organization to accomplish its objectives. The complexity of this problem does not allow the application of exact methods for instances of realistic size. Therefore we will apply Ant Colony Optimization (ACO) method which is a stochastic method for solving combinatorial optimization problems. On this paper we focus on influence of the parameters on ACO algorithm performance.
7 schema:editor N08fc4fd941f546bcabb3d7dbe5d2dc8f
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N6531d4dc58e24aeca5bde6e0994e9c97
12 schema:keywords ACO algorithm performance
13 algorithm
14 algorithm parameters
15 algorithm performance
16 ant colony optimization algorithm
17 ant colony optimization method
18 applications
19 available workers
20 colony optimization algorithm
21 combinatorial optimization problems
22 complexity
23 computational resources
24 cost
25 difficult optimization problems
26 employers
27 exact method
28 human resources
29 important real-life problem
30 influence
31 instances
32 life problems
33 method
34 objective
35 optimization algorithm
36 optimization method
37 optimization problem
38 organization
39 paper
40 parameters
41 performance
42 planing
43 planning
44 planning problem
45 problem
46 real-life problems
47 realistic size
48 reasonable computational resources
49 requirements
50 resources
51 set
52 set of employers
53 size
54 special algorithm
55 staff
56 stochastic method
57 task
58 work requirements
59 workers
60 workforce
61 workforce planning
62 workforce planning problem
63 schema:name Ant Colony Optimization Algorithm for Workforce Planning: Influence of the Algorithm Parameters
64 schema:pagination 119-128
65 schema:productId N2d38fd24b5884157a200de2ee635f140
66 N40bf98654f29459dbaae4d27a0717a95
67 schema:publisher N3e170ba8ad184ad1b51bb4fd536d52ce
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107272525
69 https://doi.org/10.1007/978-3-319-97277-0_10
70 schema:sdDatePublished 2022-05-10T10:47
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher N90bc9849356e483b9cedaf5b6d59b8dc
73 schema:url https://doi.org/10.1007/978-3-319-97277-0_10
74 sgo:license sg:explorer/license/
75 sgo:sdDataset chapters
76 rdf:type schema:Chapter
77 N08fc4fd941f546bcabb3d7dbe5d2dc8f rdf:first Nac0bb50611314d4e9bc5807147224e3d
78 rdf:rest Nb250fd4b806e4b398910bdb0c73df64f
79 N2d38fd24b5884157a200de2ee635f140 schema:name dimensions_id
80 schema:value pub.1107272525
81 rdf:type schema:PropertyValue
82 N3e170ba8ad184ad1b51bb4fd536d52ce schema:name Springer Nature
83 rdf:type schema:Organisation
84 N40bf98654f29459dbaae4d27a0717a95 schema:name doi
85 schema:value 10.1007/978-3-319-97277-0_10
86 rdf:type schema:PropertyValue
87 N4bf255c060fa40a194a706bf82b2eb34 schema:familyName Georgiev
88 schema:givenName Ivan
89 rdf:type schema:Person
90 N6531d4dc58e24aeca5bde6e0994e9c97 schema:isbn 978-3-319-97276-3
91 978-3-319-97277-0
92 schema:name Advanced Computing in Industrial Mathematics
93 rdf:type schema:Book
94 N90bc9849356e483b9cedaf5b6d59b8dc schema:name Springer Nature - SN SciGraph project
95 rdf:type schema:Organization
96 Nac0bb50611314d4e9bc5807147224e3d schema:familyName Georgiev
97 schema:givenName Krassimir
98 rdf:type schema:Person
99 Nb250fd4b806e4b398910bdb0c73df64f rdf:first Ne820cdb8e615456cb0eb8a94f3e278bc
100 rdf:rest Nc1f72c7f164f43459dc83ab0fa8bb4db
101 Nc1f72c7f164f43459dc83ab0fa8bb4db rdf:first N4bf255c060fa40a194a706bf82b2eb34
102 rdf:rest rdf:nil
103 Nddb787677e1f481c9ff527cf09c616a2 rdf:first sg:person.015745057111.08
104 rdf:rest Nf2aac23614c844c2b49f8314fd37e162
105 Ne820cdb8e615456cb0eb8a94f3e278bc schema:familyName Todorov
106 schema:givenName Michail
107 rdf:type schema:Person
108 Nebe7bf69afaf4cfba6e02c86db555cb5 rdf:first sg:person.011173106320.18
109 rdf:rest Nddb787677e1f481c9ff527cf09c616a2
110 Nf2aac23614c844c2b49f8314fd37e162 rdf:first sg:person.011334142553.21
111 rdf:rest rdf:nil
112 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
113 schema:name Mathematical Sciences
114 rdf:type schema:DefinedTerm
115 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
116 schema:name Numerical and Computational Mathematics
117 rdf:type schema:DefinedTerm
118 sg:person.011173106320.18 schema:affiliation grid-institutes:grid.410344.6
119 schema:familyName Fidanova
120 schema:givenName Stefka
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011173106320.18
122 rdf:type schema:Person
123 sg:person.011334142553.21 schema:affiliation grid-institutes:None
124 schema:familyName Luque
125 schema:givenName Gabriel
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011334142553.21
127 rdf:type schema:Person
128 sg:person.015745057111.08 schema:affiliation grid-institutes:grid.493309.4
129 schema:familyName Roeva
130 schema:givenName Olympia
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015745057111.08
132 rdf:type schema:Person
133 grid-institutes:None schema:alternateName DLCS University of Mlaga, 29071, Mlaga, Spain
134 schema:name DLCS University of Mlaga, 29071, Mlaga, Spain
135 rdf:type schema:Organization
136 grid-institutes:grid.410344.6 schema:alternateName Institute of Information and Communication Technology, Bulgarian Academy of Science, Sofia, Bulgaria
137 schema:name Institute of Information and Communication Technology, Bulgarian Academy of Science, Sofia, Bulgaria
138 rdf:type schema:Organization
139 grid-institutes:grid.493309.4 schema:alternateName Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Science, Sofia, Bulgaria
140 schema:name Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Science, Sofia, Bulgaria
141 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...