Fast Homomorphic Evaluation of Deep Discretized Neural Networks View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018-07-24

AUTHORS

Florian Bourse , Michele Minelli , Matthias Minihold , Pascal Paillier

ABSTRACT

The rise of machine learning as a service multiplies scenarios where one faces a privacy dilemma: either sensitive user data must be revealed to the entity that evaluates the cognitive model (e.g., in the Cloud), or the model itself must be revealed to the user so that the evaluation can take place locally. Fully Homomorphic Encryption (FHE) offers an elegant way to reconcile these conflicting interests in the Cloud-based scenario and also preserve non-interactivity. However, due to the inefficiency of existing FHE schemes, most applications prefer to use Somewhat Homomorphic Encryption (SHE), where the complexity of the computation to be performed has to be known in advance, and the efficiency of the scheme depends on this global complexity. In this paper, we present a new framework for homomorphic evaluation of neural networks, that we call FHE–DiNN, whose complexity is strictly linear in the depth of the network and whose parameters can be set beforehand. To obtain this scale-invariance property, we rely heavily on the bootstrapping procedure. We refine the recent FHE construction by Chillotti et al. (ASIACRYPT 2016) in order to increase the message space and apply the sign function (that we use to activate the neurons in the network) during the bootstrapping. We derive some empirical results, using TFHE library as a starting point, and classify encrypted images from the MNIST dataset with more than 96% accuracy in less than 1.7 s. Finally, as a side contribution, we analyze and introduce some variations to the bootstrapping technique of Chillotti et al. that offer an improvement in efficiency at the cost of increasing the storage requirements. More... »

PAGES

483-512

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-96878-0_17

DOI

http://dx.doi.org/10.1007/978-3-319-96878-0_17

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105780951


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Orange (France)", 
          "id": "https://www.grid.ac/institutes/grid.89485.38", 
          "name": [
            "Orange Labs, Applied Crypto Group, Cesson-S\u00e9vign\u00e9, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bourse", 
        "givenName": "Florian", 
        "id": "sg:person.013454106661.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013454106661.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French Institute for Research in Computer Science and Automation", 
          "id": "https://www.grid.ac/institutes/grid.5328.c", 
          "name": [
            "DIENS, \u00c9cole normale sup\u00e9rieure, CNRS, PSL Research University, Paris, France", 
            "Inria, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Minelli", 
        "givenName": "Michele", 
        "id": "sg:person.015114730252.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015114730252.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ruhr University Bochum", 
          "id": "https://www.grid.ac/institutes/grid.5570.7", 
          "name": [
            "Horst G\u00f6rtz Institut f\u00fcr IT-Security, Ruhr-Universit\u00e4t Bochum, Bochum, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Minihold", 
        "givenName": "Matthias", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "CryptoExperts (France)", 
          "id": "https://www.grid.ac/institutes/grid.470554.7", 
          "name": [
            "CryptoExperts, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Paillier", 
        "givenName": "Pascal", 
        "id": "sg:person.012202553435.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012202553435.44"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-662-44371-2_31", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003203986", 
          "https://doi.org/10.1007/978-3-662-44371-2_31"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-46447-2_33", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006063386", 
          "https://doi.org/10.1007/978-3-662-46447-2_33"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-46447-2_33", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006063386", 
          "https://doi.org/10.1007/978-3-662-46447-2_33"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-40041-4_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006864000", 
          "https://doi.org/10.1007/978-3-642-40041-4_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-32009-5_49", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011363442", 
          "https://doi.org/10.1007/978-3-642-32009-5_49"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1060590.1060603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012332159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-89255-7_23", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021516251", 
          "https://doi.org/10.1007/978-3-540-89255-7_23"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-89255-7_23", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021516251", 
          "https://doi.org/10.1007/978-3-540-89255-7_23"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-17373-8_22", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021970215", 
          "https://doi.org/10.1007/978-3-642-17373-8_22"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-17373-8_22", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021970215", 
          "https://doi.org/10.1007/978-3-642-17373-8_22"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02551274", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023250347", 
          "https://doi.org/10.1007/bf02551274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02551274", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023250347", 
          "https://doi.org/10.1007/bf02551274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-13190-5_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023605606", 
          "https://doi.org/10.1007/978-3-642-13190-5_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-13190-5_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023605606", 
          "https://doi.org/10.1007/978-3-642-13190-5_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-13190-5_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025305533", 
          "https://doi.org/10.1007/978-3-642-13190-5_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-13190-5_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025305533", 
          "https://doi.org/10.1007/978-3-642-13190-5_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-41320-9_13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028621484", 
          "https://doi.org/10.1007/978-3-642-41320-9_13"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11787006_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035160724", 
          "https://doi.org/10.1007/11787006_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11787006_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035160724", 
          "https://doi.org/10.1007/11787006_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-31301-6_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036619867", 
          "https://doi.org/10.1007/978-3-319-31301-6_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-46800-5_24", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037378777", 
          "https://doi.org/10.1007/978-3-662-46800-5_24"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-46800-5_24", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037378777", 
          "https://doi.org/10.1007/978-3-662-46800-5_24"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-13013-7_25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039389499", 
          "https://doi.org/10.1007/978-3-642-13013-7_25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-46800-5_25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042169019", 
          "https://doi.org/10.1007/978-3-662-46800-5_25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-46800-5_25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042169019", 
          "https://doi.org/10.1007/978-3-662-46800-5_25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2554797.2554799", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042352254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-44371-2_17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047019051", 
          "https://doi.org/10.1007/978-3-662-44371-2_17"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-22792-9_29", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049197805", 
          "https://doi.org/10.1007/978-3-642-22792-9_29"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-22792-9_29", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049197805", 
          "https://doi.org/10.1007/978-3-642-22792-9_29"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-40041-4_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049650086", 
          "https://doi.org/10.1007/978-3-642-40041-4_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0893-6080(91)90009-t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050371510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0893-6080(91)90009-t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050371510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-53015-3_12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051267410", 
          "https://doi.org/10.1007/978-3-662-53015-3_12"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/5.726791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061179979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tc.2015.2470255", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061536082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/335191.335438", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063168485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-53887-6_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084896599", 
          "https://doi.org/10.1007/978-3-662-53887-6_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-70694-8_14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093076441", 
          "https://doi.org/10.1007/978-3-319-70694-8_14"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/sp.2017.12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093587091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.14722/ndss.2015.23241", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095873103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9781611974782.160", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098556665"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-07-24", 
    "datePublishedReg": "2018-07-24", 
    "description": "The rise of machine learning as a service multiplies scenarios where one faces a privacy dilemma: either sensitive user data must be revealed to the entity that evaluates the cognitive model (e.g., in the Cloud), or the model itself must be revealed to the user so that the evaluation can take place locally. Fully Homomorphic Encryption (FHE) offers an elegant way to reconcile these conflicting interests in the Cloud-based scenario and also preserve non-interactivity. However, due to the inefficiency of existing FHE schemes, most applications prefer to use Somewhat Homomorphic Encryption (SHE), where the complexity of the computation to be performed has to be known in advance, and the efficiency of the scheme depends on this global complexity. In this paper, we present a new framework for homomorphic evaluation of neural networks, that we call FHE\u2013DiNN, whose complexity is strictly linear in the depth of the network and whose parameters can be set beforehand. To obtain this scale-invariance property, we rely heavily on the bootstrapping procedure. We refine the recent FHE construction by Chillotti et al. (ASIACRYPT 2016) in order to increase the message space and apply the sign function (that we use to activate the neurons in the network) during the bootstrapping. We derive some empirical results, using TFHE library as a starting point, and classify encrypted images from the MNIST dataset with more than 96% accuracy in less than 1.7 s. Finally, as a side contribution, we analyze and introduce some variations to the bootstrapping technique of Chillotti et al. that offer an improvement in efficiency at the cost of increasing the storage requirements.", 
    "editor": [
      {
        "familyName": "Shacham", 
        "givenName": "Hovav", 
        "type": "Person"
      }, 
      {
        "familyName": "Boldyreva", 
        "givenName": "Alexandra", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-96878-0_17", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3792429", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7738466", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": {
      "isbn": [
        "978-3-319-96877-3", 
        "978-3-319-96878-0"
      ], 
      "name": "Advances in Cryptology \u2013 CRYPTO 2018", 
      "type": "Book"
    }, 
    "name": "Fast Homomorphic Evaluation of Deep Discretized Neural Networks", 
    "pagination": "483-512", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-96878-0_17"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4a5bdf9807cf386b8b216a6f853300476bdfae53463055841a38a190be72bade"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105780951"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-96878-0_17", 
      "https://app.dimensions.ai/details/publication/pub.1105780951"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T05:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000325_0000000325/records_100809_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-319-96878-0_17"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-96878-0_17'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-96878-0_17'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-96878-0_17'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-96878-0_17'


 

This table displays all metadata directly associated to this object as RDF triples.

215 TRIPLES      23 PREDICATES      56 URIs      19 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-96878-0_17 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N4bdb3d1f2c984831a5029c40c4e0c23c
4 schema:citation sg:pub.10.1007/11787006_1
5 sg:pub.10.1007/978-3-319-31301-6_2
6 sg:pub.10.1007/978-3-319-70694-8_14
7 sg:pub.10.1007/978-3-540-89255-7_23
8 sg:pub.10.1007/978-3-642-13013-7_25
9 sg:pub.10.1007/978-3-642-13190-5_1
10 sg:pub.10.1007/978-3-642-13190-5_2
11 sg:pub.10.1007/978-3-642-17373-8_22
12 sg:pub.10.1007/978-3-642-22792-9_29
13 sg:pub.10.1007/978-3-642-32009-5_49
14 sg:pub.10.1007/978-3-642-40041-4_1
15 sg:pub.10.1007/978-3-642-40041-4_5
16 sg:pub.10.1007/978-3-642-41320-9_13
17 sg:pub.10.1007/978-3-662-44371-2_17
18 sg:pub.10.1007/978-3-662-44371-2_31
19 sg:pub.10.1007/978-3-662-46447-2_33
20 sg:pub.10.1007/978-3-662-46800-5_24
21 sg:pub.10.1007/978-3-662-46800-5_25
22 sg:pub.10.1007/978-3-662-53015-3_12
23 sg:pub.10.1007/978-3-662-53887-6_1
24 sg:pub.10.1007/bf02551274
25 https://doi.org/10.1016/0893-6080(91)90009-t
26 https://doi.org/10.1109/5.726791
27 https://doi.org/10.1109/sp.2017.12
28 https://doi.org/10.1109/tc.2015.2470255
29 https://doi.org/10.1137/1.9781611974782.160
30 https://doi.org/10.1145/1060590.1060603
31 https://doi.org/10.1145/2554797.2554799
32 https://doi.org/10.1145/335191.335438
33 https://doi.org/10.14722/ndss.2015.23241
34 schema:datePublished 2018-07-24
35 schema:datePublishedReg 2018-07-24
36 schema:description The rise of machine learning as a service multiplies scenarios where one faces a privacy dilemma: either sensitive user data must be revealed to the entity that evaluates the cognitive model (e.g., in the Cloud), or the model itself must be revealed to the user so that the evaluation can take place locally. Fully Homomorphic Encryption (FHE) offers an elegant way to reconcile these conflicting interests in the Cloud-based scenario and also preserve non-interactivity. However, due to the inefficiency of existing FHE schemes, most applications prefer to use Somewhat Homomorphic Encryption (SHE), where the complexity of the computation to be performed has to be known in advance, and the efficiency of the scheme depends on this global complexity. In this paper, we present a new framework for homomorphic evaluation of neural networks, that we call FHE–DiNN, whose complexity is strictly linear in the depth of the network and whose parameters can be set beforehand. To obtain this scale-invariance property, we rely heavily on the bootstrapping procedure. We refine the recent FHE construction by Chillotti et al. (ASIACRYPT 2016) in order to increase the message space and apply the sign function (that we use to activate the neurons in the network) during the bootstrapping. We derive some empirical results, using TFHE library as a starting point, and classify encrypted images from the MNIST dataset with more than 96% accuracy in less than 1.7 s. Finally, as a side contribution, we analyze and introduce some variations to the bootstrapping technique of Chillotti et al. that offer an improvement in efficiency at the cost of increasing the storage requirements.
37 schema:editor Nb0315e3389f845c897baf5262a88ac69
38 schema:genre chapter
39 schema:inLanguage en
40 schema:isAccessibleForFree false
41 schema:isPartOf N30201389d0e94dc4b4c2fa86230a35ec
42 schema:name Fast Homomorphic Evaluation of Deep Discretized Neural Networks
43 schema:pagination 483-512
44 schema:productId N7fe8b9e45c7f45db8219c91b34504894
45 N9659cc3060404532aa179fca73f7ab77
46 Ne534627f1b9945eeb310732749d19110
47 schema:publisher N3fa892142a3548fc889f16053f3847bf
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105780951
49 https://doi.org/10.1007/978-3-319-96878-0_17
50 schema:sdDatePublished 2019-04-16T05:01
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher Nf438766ec26d4ce7a76394d546215aa1
53 schema:url https://link.springer.com/10.1007%2F978-3-319-96878-0_17
54 sgo:license sg:explorer/license/
55 sgo:sdDataset chapters
56 rdf:type schema:Chapter
57 N0e27cacff66d48628b9c134652d1f980 rdf:first N457a29a5e6654d6f8d796319e540332a
58 rdf:rest N67e59b57fa894052b441444f2b0164d4
59 N201692d1a5b446349a3b4dfe355ccb01 rdf:first N8f94eb8b0ff0484bade3c0960fba3fe6
60 rdf:rest rdf:nil
61 N30201389d0e94dc4b4c2fa86230a35ec schema:isbn 978-3-319-96877-3
62 978-3-319-96878-0
63 schema:name Advances in Cryptology – CRYPTO 2018
64 rdf:type schema:Book
65 N3fa892142a3548fc889f16053f3847bf schema:location Cham
66 schema:name Springer International Publishing
67 rdf:type schema:Organisation
68 N457a29a5e6654d6f8d796319e540332a schema:affiliation https://www.grid.ac/institutes/grid.5570.7
69 schema:familyName Minihold
70 schema:givenName Matthias
71 rdf:type schema:Person
72 N4bdb3d1f2c984831a5029c40c4e0c23c rdf:first sg:person.013454106661.29
73 rdf:rest Nd32b690a276b4dd99cf07971ad779f5f
74 N67e59b57fa894052b441444f2b0164d4 rdf:first sg:person.012202553435.44
75 rdf:rest rdf:nil
76 N7fe8b9e45c7f45db8219c91b34504894 schema:name dimensions_id
77 schema:value pub.1105780951
78 rdf:type schema:PropertyValue
79 N8f94eb8b0ff0484bade3c0960fba3fe6 schema:familyName Boldyreva
80 schema:givenName Alexandra
81 rdf:type schema:Person
82 N9659cc3060404532aa179fca73f7ab77 schema:name doi
83 schema:value 10.1007/978-3-319-96878-0_17
84 rdf:type schema:PropertyValue
85 Nb0315e3389f845c897baf5262a88ac69 rdf:first Nc6962b42305e47549107105eb6108d36
86 rdf:rest N201692d1a5b446349a3b4dfe355ccb01
87 Nc6962b42305e47549107105eb6108d36 schema:familyName Shacham
88 schema:givenName Hovav
89 rdf:type schema:Person
90 Nd32b690a276b4dd99cf07971ad779f5f rdf:first sg:person.015114730252.70
91 rdf:rest N0e27cacff66d48628b9c134652d1f980
92 Ne534627f1b9945eeb310732749d19110 schema:name readcube_id
93 schema:value 4a5bdf9807cf386b8b216a6f853300476bdfae53463055841a38a190be72bade
94 rdf:type schema:PropertyValue
95 Nf438766ec26d4ce7a76394d546215aa1 schema:name Springer Nature - SN SciGraph project
96 rdf:type schema:Organization
97 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
98 schema:name Information and Computing Sciences
99 rdf:type schema:DefinedTerm
100 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
101 schema:name Artificial Intelligence and Image Processing
102 rdf:type schema:DefinedTerm
103 sg:grant.3792429 http://pending.schema.org/fundedItem sg:pub.10.1007/978-3-319-96878-0_17
104 rdf:type schema:MonetaryGrant
105 sg:grant.7738466 http://pending.schema.org/fundedItem sg:pub.10.1007/978-3-319-96878-0_17
106 rdf:type schema:MonetaryGrant
107 sg:person.012202553435.44 schema:affiliation https://www.grid.ac/institutes/grid.470554.7
108 schema:familyName Paillier
109 schema:givenName Pascal
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012202553435.44
111 rdf:type schema:Person
112 sg:person.013454106661.29 schema:affiliation https://www.grid.ac/institutes/grid.89485.38
113 schema:familyName Bourse
114 schema:givenName Florian
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013454106661.29
116 rdf:type schema:Person
117 sg:person.015114730252.70 schema:affiliation https://www.grid.ac/institutes/grid.5328.c
118 schema:familyName Minelli
119 schema:givenName Michele
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015114730252.70
121 rdf:type schema:Person
122 sg:pub.10.1007/11787006_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035160724
123 https://doi.org/10.1007/11787006_1
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/978-3-319-31301-6_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036619867
126 https://doi.org/10.1007/978-3-319-31301-6_2
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/978-3-319-70694-8_14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093076441
129 https://doi.org/10.1007/978-3-319-70694-8_14
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/978-3-540-89255-7_23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021516251
132 https://doi.org/10.1007/978-3-540-89255-7_23
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/978-3-642-13013-7_25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039389499
135 https://doi.org/10.1007/978-3-642-13013-7_25
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/978-3-642-13190-5_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025305533
138 https://doi.org/10.1007/978-3-642-13190-5_1
139 rdf:type schema:CreativeWork
140 sg:pub.10.1007/978-3-642-13190-5_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023605606
141 https://doi.org/10.1007/978-3-642-13190-5_2
142 rdf:type schema:CreativeWork
143 sg:pub.10.1007/978-3-642-17373-8_22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021970215
144 https://doi.org/10.1007/978-3-642-17373-8_22
145 rdf:type schema:CreativeWork
146 sg:pub.10.1007/978-3-642-22792-9_29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049197805
147 https://doi.org/10.1007/978-3-642-22792-9_29
148 rdf:type schema:CreativeWork
149 sg:pub.10.1007/978-3-642-32009-5_49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011363442
150 https://doi.org/10.1007/978-3-642-32009-5_49
151 rdf:type schema:CreativeWork
152 sg:pub.10.1007/978-3-642-40041-4_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049650086
153 https://doi.org/10.1007/978-3-642-40041-4_1
154 rdf:type schema:CreativeWork
155 sg:pub.10.1007/978-3-642-40041-4_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006864000
156 https://doi.org/10.1007/978-3-642-40041-4_5
157 rdf:type schema:CreativeWork
158 sg:pub.10.1007/978-3-642-41320-9_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028621484
159 https://doi.org/10.1007/978-3-642-41320-9_13
160 rdf:type schema:CreativeWork
161 sg:pub.10.1007/978-3-662-44371-2_17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047019051
162 https://doi.org/10.1007/978-3-662-44371-2_17
163 rdf:type schema:CreativeWork
164 sg:pub.10.1007/978-3-662-44371-2_31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003203986
165 https://doi.org/10.1007/978-3-662-44371-2_31
166 rdf:type schema:CreativeWork
167 sg:pub.10.1007/978-3-662-46447-2_33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006063386
168 https://doi.org/10.1007/978-3-662-46447-2_33
169 rdf:type schema:CreativeWork
170 sg:pub.10.1007/978-3-662-46800-5_24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037378777
171 https://doi.org/10.1007/978-3-662-46800-5_24
172 rdf:type schema:CreativeWork
173 sg:pub.10.1007/978-3-662-46800-5_25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042169019
174 https://doi.org/10.1007/978-3-662-46800-5_25
175 rdf:type schema:CreativeWork
176 sg:pub.10.1007/978-3-662-53015-3_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051267410
177 https://doi.org/10.1007/978-3-662-53015-3_12
178 rdf:type schema:CreativeWork
179 sg:pub.10.1007/978-3-662-53887-6_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084896599
180 https://doi.org/10.1007/978-3-662-53887-6_1
181 rdf:type schema:CreativeWork
182 sg:pub.10.1007/bf02551274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023250347
183 https://doi.org/10.1007/bf02551274
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/0893-6080(91)90009-t schema:sameAs https://app.dimensions.ai/details/publication/pub.1050371510
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1109/5.726791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061179979
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1109/sp.2017.12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093587091
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1109/tc.2015.2470255 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061536082
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1137/1.9781611974782.160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098556665
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1145/1060590.1060603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012332159
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1145/2554797.2554799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042352254
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1145/335191.335438 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063168485
200 rdf:type schema:CreativeWork
201 https://doi.org/10.14722/ndss.2015.23241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095873103
202 rdf:type schema:CreativeWork
203 https://www.grid.ac/institutes/grid.470554.7 schema:alternateName CryptoExperts (France)
204 schema:name CryptoExperts, Paris, France
205 rdf:type schema:Organization
206 https://www.grid.ac/institutes/grid.5328.c schema:alternateName French Institute for Research in Computer Science and Automation
207 schema:name DIENS, École normale supérieure, CNRS, PSL Research University, Paris, France
208 Inria, Paris, France
209 rdf:type schema:Organization
210 https://www.grid.ac/institutes/grid.5570.7 schema:alternateName Ruhr University Bochum
211 schema:name Horst Görtz Institut für IT-Security, Ruhr-Universität Bochum, Bochum, Germany
212 rdf:type schema:Organization
213 https://www.grid.ac/institutes/grid.89485.38 schema:alternateName Orange (France)
214 schema:name Orange Labs, Applied Crypto Group, Cesson-Sévigné, France
215 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...