Swarm Intelligence and IoT-Based Smart Cities: A Review View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2019

AUTHORS

Ouarda Zedadra , Antonio Guerrieri , Nicolas Jouandeau , Giandomenico Spezzano , Hamid Seridi , Giancarlo Fortino

ABSTRACT

Smart cities are complex and large distributed systems characterized by their heterogeneity, security, and reliability challenges. In addition, they are required to take into account several scalability, efficiency, safety, real-time responses, and smartness issues. All of this means that building smart city applications is extremely complex. Swarm Intelligence is a very promising paradigm to deal with such complex and dynamic systems. It presents robust, scalable and self-organized behaviors to deal with dynamic and fast changing systems. The intelligence of cities can be modeled as a swarm of digital telecommunication networks (the nerves), ubiquitously embedded intelligence (the brains), sensors and tags (the sensory organs), and software (the knowledge and cognitive competence). In this chapter, swarm intelligence-based algorithms and existing swarm intelligence-based smart city solutions will be analyzed. Moreover, a swarm-based framework for smart cities will be presented. Then, a set of trends on how to use swarm intelligence in smart cities, in order to make them flexible and scalable, will be investigated. More... »

PAGES

177-200

References to SciGraph publications

  • 2015. Waste Management as an IoT-Enabled Service in Smart Cities in INTERNET OF THINGS, SMART SPACES, AND NEXT GENERATION NETWORKS AND SYSTEMS
  • 2007-06. The biological principles of swarm intelligence in SWARM INTELLIGENCE
  • 2017. Designing, Developing, and Facilitating Smart Cities in NONE
  • 2017-02. Toward Self-monitoring Smart Cities: the OpenSense2 Approach in INFORMATIK-SPEKTRUM
  • 2016. Smart Agents and Fog Computing for Smart City Applications in SMART CITIES
  • Book

    TITLE

    The Internet of Things for Smart Urban Ecosystems

    ISBN

    978-3-319-96549-9
    978-3-319-96550-5

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-319-96550-5_8

    DOI

    http://dx.doi.org/10.1007/978-3-319-96550-5_8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1106097157


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "University"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zedadra", 
            "givenName": "Ouarda", 
            "id": "sg:person.016601532425.73", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016601532425.73"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "CNR - National Research Council of Italy - Institute for High Performance Computing and Networking (ICAR)"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Guerrieri", 
            "givenName": "Antonio", 
            "id": "sg:person.010640163674.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010640163674.44"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Paris 8 University", 
              "id": "https://www.grid.ac/institutes/grid.15878.33", 
              "name": [
                "Paris 8 University"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jouandeau", 
            "givenName": "Nicolas", 
            "id": "sg:person.015107255761.61", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015107255761.61"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "CNR - National Research Council of Italy - Institute for High Performance Computing and Networking (ICAR)"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Spezzano", 
            "givenName": "Giandomenico", 
            "id": "sg:person.015641541767.88", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015641541767.88"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "University"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Seridi", 
            "givenName": "Hamid", 
            "id": "sg:person.014311675361.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014311675361.34"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Calabria", 
              "id": "https://www.grid.ac/institutes/grid.7778.f", 
              "name": [
                "CNR - National Research Council of Italy - Institute for High Performance Computing and Networking (ICAR)", 
                "Universit\u00e0 della Calabria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fortino", 
            "givenName": "Giancarlo", 
            "id": "sg:person.015146733631.74", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015146733631.74"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.jss.2015.08.049", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004334185"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11721-007-0004-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008737754", 
              "https://doi.org/10.1007/s11721-007-0004-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/03052150500384759", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022235354"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.procs.2015.09.170", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022431179"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00287-016-1009-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024731813", 
              "https://doi.org/10.1007/s00287-016-1009-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00287-016-1009-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024731813", 
              "https://doi.org/10.1007/s00287-016-1009-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.aei.2016.11.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032484930"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jnca.2016.11.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036225235"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-23126-6_10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037981289", 
              "https://doi.org/10.1007/978-3-319-23126-6_10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-39595-1_14", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041574742", 
              "https://doi.org/10.1007/978-3-319-39595-1_14"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-44924-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047847863", 
              "https://doi.org/10.1007/978-3-319-44924-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.asoc.2014.07.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048444540"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/mcse.2013.39", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061398579"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1147/jrd.2010.2048257", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063179133"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.14201/adcaij2015428998", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067207205"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1504/ijbic.2011.038700", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067436783"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1504/ijmmno.2010.035430", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067475866"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.future.2017.05.034", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086046086"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/imis.2011.129", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093754197"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/smartmile.2013.6708196", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094059665"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/riot.2015.7104901", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094285524"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iota.2016.7562757", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094543371"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1107021712", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019", 
        "datePublishedReg": "2019-01-01", 
        "description": "Smart cities are complex and large distributed systems characterized by their heterogeneity, security, and reliability challenges. In addition, they are required to take into account several scalability, efficiency, safety, real-time responses, and smartness issues. All of this means that building smart city applications is extremely complex. Swarm Intelligence is a very promising paradigm to deal with such complex and dynamic systems. It presents robust, scalable and self-organized behaviors to deal with dynamic and fast changing systems. The intelligence of cities can be modeled as a swarm of digital telecommunication networks (the nerves), ubiquitously embedded intelligence (the brains), sensors and tags (the sensory organs), and software (the knowledge and cognitive competence). In this chapter, swarm intelligence-based algorithms and existing swarm intelligence-based smart city solutions will be analyzed. Moreover, a swarm-based framework for smart cities will be presented. Then, a set of trends on how to use swarm intelligence in smart cities, in order to make them flexible and scalable, will be investigated.", 
        "editor": [
          {
            "familyName": "Cicirelli", 
            "givenName": "Franco", 
            "type": "Person"
          }, 
          {
            "familyName": "Guerrieri", 
            "givenName": "Antonio", 
            "type": "Person"
          }, 
          {
            "familyName": "Mastroianni", 
            "givenName": "Carlo", 
            "type": "Person"
          }, 
          {
            "familyName": "Spezzano", 
            "givenName": "Giandomenico", 
            "type": "Person"
          }, 
          {
            "familyName": "Vinci", 
            "givenName": "Andrea", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-319-96550-5_8", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-319-96549-9", 
            "978-3-319-96550-5"
          ], 
          "name": "The Internet of Things for Smart Urban Ecosystems", 
          "type": "Book"
        }, 
        "name": "Swarm Intelligence and IoT-Based Smart Cities: A Review", 
        "pagination": "177-200", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-319-96550-5_8"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "91425c680dd3112491b72d478a50e896bcd17720e03e1979d78cc6b905409895"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1106097157"
            ]
          }
        ], 
        "publisher": {
          "location": "Cham", 
          "name": "Springer International Publishing", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-319-96550-5_8", 
          "https://app.dimensions.ai/details/publication/pub.1106097157"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T22:38", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000605.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-3-319-96550-5_8"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-96550-5_8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-96550-5_8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-96550-5_8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-96550-5_8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    202 TRIPLES      23 PREDICATES      49 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-319-96550-5_8 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N9506ca421dd44f5197dd279253dff6e8
    4 schema:citation sg:pub.10.1007/978-3-319-23126-6_10
    5 sg:pub.10.1007/978-3-319-39595-1_14
    6 sg:pub.10.1007/978-3-319-44924-1
    7 sg:pub.10.1007/s00287-016-1009-y
    8 sg:pub.10.1007/s11721-007-0004-y
    9 https://app.dimensions.ai/details/publication/pub.1107021712
    10 https://doi.org/10.1016/j.aei.2016.11.005
    11 https://doi.org/10.1016/j.asoc.2014.07.014
    12 https://doi.org/10.1016/j.future.2017.05.034
    13 https://doi.org/10.1016/j.jnca.2016.11.004
    14 https://doi.org/10.1016/j.jss.2015.08.049
    15 https://doi.org/10.1016/j.procs.2015.09.170
    16 https://doi.org/10.1080/03052150500384759
    17 https://doi.org/10.1109/imis.2011.129
    18 https://doi.org/10.1109/iota.2016.7562757
    19 https://doi.org/10.1109/mcse.2013.39
    20 https://doi.org/10.1109/riot.2015.7104901
    21 https://doi.org/10.1109/smartmile.2013.6708196
    22 https://doi.org/10.1147/jrd.2010.2048257
    23 https://doi.org/10.14201/adcaij2015428998
    24 https://doi.org/10.1504/ijbic.2011.038700
    25 https://doi.org/10.1504/ijmmno.2010.035430
    26 schema:datePublished 2019
    27 schema:datePublishedReg 2019-01-01
    28 schema:description Smart cities are complex and large distributed systems characterized by their heterogeneity, security, and reliability challenges. In addition, they are required to take into account several scalability, efficiency, safety, real-time responses, and smartness issues. All of this means that building smart city applications is extremely complex. Swarm Intelligence is a very promising paradigm to deal with such complex and dynamic systems. It presents robust, scalable and self-organized behaviors to deal with dynamic and fast changing systems. The intelligence of cities can be modeled as a swarm of digital telecommunication networks (the nerves), ubiquitously embedded intelligence (the brains), sensors and tags (the sensory organs), and software (the knowledge and cognitive competence). In this chapter, swarm intelligence-based algorithms and existing swarm intelligence-based smart city solutions will be analyzed. Moreover, a swarm-based framework for smart cities will be presented. Then, a set of trends on how to use swarm intelligence in smart cities, in order to make them flexible and scalable, will be investigated.
    29 schema:editor N2e486849ac0e4441b6b6576f7a5ec235
    30 schema:genre chapter
    31 schema:inLanguage en
    32 schema:isAccessibleForFree false
    33 schema:isPartOf N06008b51f1064e948fe9953e33215118
    34 schema:name Swarm Intelligence and IoT-Based Smart Cities: A Review
    35 schema:pagination 177-200
    36 schema:productId N0408c928916c4392ba77f06cfba69bcc
    37 N630d9f7fe1ca43c7aaa558f1d3cd0327
    38 Ndfa71b3a9e0d440ca072db70d1ea7334
    39 schema:publisher N2ca1290c3ab04de6a1b63c4646e2f8cf
    40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106097157
    41 https://doi.org/10.1007/978-3-319-96550-5_8
    42 schema:sdDatePublished 2019-04-15T22:38
    43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    44 schema:sdPublisher N64eca6d332c44b65986182691cd9a95f
    45 schema:url http://link.springer.com/10.1007/978-3-319-96550-5_8
    46 sgo:license sg:explorer/license/
    47 sgo:sdDataset chapters
    48 rdf:type schema:Chapter
    49 N021183f819c04f7f9dabbba2d9313ad8 rdf:first sg:person.014311675361.34
    50 rdf:rest Nee9c1441faaa4e0db28a1cf660fa66c5
    51 N0408c928916c4392ba77f06cfba69bcc schema:name doi
    52 schema:value 10.1007/978-3-319-96550-5_8
    53 rdf:type schema:PropertyValue
    54 N06008b51f1064e948fe9953e33215118 schema:isbn 978-3-319-96549-9
    55 978-3-319-96550-5
    56 schema:name The Internet of Things for Smart Urban Ecosystems
    57 rdf:type schema:Book
    58 N11b8520df64a4c7480c9f92443a78940 rdf:first N1f4356d2d1a247ec9d1fde9755846a08
    59 rdf:rest N5e5778b8b6104f2da05b1548f6c47bd7
    60 N1dc3aa2aa74a4960a4fac03ea71cb42a rdf:first sg:person.015107255761.61
    61 rdf:rest Nc45ca1d066f54bbda84011ae248cdd95
    62 N1f4356d2d1a247ec9d1fde9755846a08 schema:familyName Guerrieri
    63 schema:givenName Antonio
    64 rdf:type schema:Person
    65 N23bf5c56846d45018a62fa6e217744eb schema:familyName Spezzano
    66 schema:givenName Giandomenico
    67 rdf:type schema:Person
    68 N2c57338a3fe349028cea3cd54fc1bc20 rdf:first N23bf5c56846d45018a62fa6e217744eb
    69 rdf:rest N667afcdf16c94fd59cafed937f7e73ba
    70 N2ca1290c3ab04de6a1b63c4646e2f8cf schema:location Cham
    71 schema:name Springer International Publishing
    72 rdf:type schema:Organisation
    73 N2d6d46b8d9b64a8ab4fda486f55ecc71 schema:name University
    74 rdf:type schema:Organization
    75 N2e486849ac0e4441b6b6576f7a5ec235 rdf:first N769678ddf41e451f83ebe6b119641772
    76 rdf:rest N11b8520df64a4c7480c9f92443a78940
    77 N4840ae57e0084dd19fd8a57f0ff9a65f schema:familyName Mastroianni
    78 schema:givenName Carlo
    79 rdf:type schema:Person
    80 N52f8e38c3f4345519de2c19a6fd8f5ec schema:name CNR - National Research Council of Italy - Institute for High Performance Computing and Networking (ICAR)
    81 rdf:type schema:Organization
    82 N5e5778b8b6104f2da05b1548f6c47bd7 rdf:first N4840ae57e0084dd19fd8a57f0ff9a65f
    83 rdf:rest N2c57338a3fe349028cea3cd54fc1bc20
    84 N61fa3fbfef284258af94e71eb3ee0b63 schema:name CNR - National Research Council of Italy - Institute for High Performance Computing and Networking (ICAR)
    85 rdf:type schema:Organization
    86 N630d9f7fe1ca43c7aaa558f1d3cd0327 schema:name dimensions_id
    87 schema:value pub.1106097157
    88 rdf:type schema:PropertyValue
    89 N6453ee52747f4868b2050032bb376405 schema:familyName Vinci
    90 schema:givenName Andrea
    91 rdf:type schema:Person
    92 N64eca6d332c44b65986182691cd9a95f schema:name Springer Nature - SN SciGraph project
    93 rdf:type schema:Organization
    94 N667afcdf16c94fd59cafed937f7e73ba rdf:first N6453ee52747f4868b2050032bb376405
    95 rdf:rest rdf:nil
    96 N769678ddf41e451f83ebe6b119641772 schema:familyName Cicirelli
    97 schema:givenName Franco
    98 rdf:type schema:Person
    99 N9506ca421dd44f5197dd279253dff6e8 rdf:first sg:person.016601532425.73
    100 rdf:rest N970d9c82a76f4b06bd65d01a22924c27
    101 N970d9c82a76f4b06bd65d01a22924c27 rdf:first sg:person.010640163674.44
    102 rdf:rest N1dc3aa2aa74a4960a4fac03ea71cb42a
    103 Na7d6df0c74fc4c9fa4316c3a107eb410 schema:name University
    104 rdf:type schema:Organization
    105 Nc45ca1d066f54bbda84011ae248cdd95 rdf:first sg:person.015641541767.88
    106 rdf:rest N021183f819c04f7f9dabbba2d9313ad8
    107 Ndfa71b3a9e0d440ca072db70d1ea7334 schema:name readcube_id
    108 schema:value 91425c680dd3112491b72d478a50e896bcd17720e03e1979d78cc6b905409895
    109 rdf:type schema:PropertyValue
    110 Nee9c1441faaa4e0db28a1cf660fa66c5 rdf:first sg:person.015146733631.74
    111 rdf:rest rdf:nil
    112 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    113 schema:name Information and Computing Sciences
    114 rdf:type schema:DefinedTerm
    115 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    116 schema:name Artificial Intelligence and Image Processing
    117 rdf:type schema:DefinedTerm
    118 sg:person.010640163674.44 schema:affiliation N52f8e38c3f4345519de2c19a6fd8f5ec
    119 schema:familyName Guerrieri
    120 schema:givenName Antonio
    121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010640163674.44
    122 rdf:type schema:Person
    123 sg:person.014311675361.34 schema:affiliation N2d6d46b8d9b64a8ab4fda486f55ecc71
    124 schema:familyName Seridi
    125 schema:givenName Hamid
    126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014311675361.34
    127 rdf:type schema:Person
    128 sg:person.015107255761.61 schema:affiliation https://www.grid.ac/institutes/grid.15878.33
    129 schema:familyName Jouandeau
    130 schema:givenName Nicolas
    131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015107255761.61
    132 rdf:type schema:Person
    133 sg:person.015146733631.74 schema:affiliation https://www.grid.ac/institutes/grid.7778.f
    134 schema:familyName Fortino
    135 schema:givenName Giancarlo
    136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015146733631.74
    137 rdf:type schema:Person
    138 sg:person.015641541767.88 schema:affiliation N61fa3fbfef284258af94e71eb3ee0b63
    139 schema:familyName Spezzano
    140 schema:givenName Giandomenico
    141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015641541767.88
    142 rdf:type schema:Person
    143 sg:person.016601532425.73 schema:affiliation Na7d6df0c74fc4c9fa4316c3a107eb410
    144 schema:familyName Zedadra
    145 schema:givenName Ouarda
    146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016601532425.73
    147 rdf:type schema:Person
    148 sg:pub.10.1007/978-3-319-23126-6_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037981289
    149 https://doi.org/10.1007/978-3-319-23126-6_10
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1007/978-3-319-39595-1_14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041574742
    152 https://doi.org/10.1007/978-3-319-39595-1_14
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1007/978-3-319-44924-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047847863
    155 https://doi.org/10.1007/978-3-319-44924-1
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1007/s00287-016-1009-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1024731813
    158 https://doi.org/10.1007/s00287-016-1009-y
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1007/s11721-007-0004-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1008737754
    161 https://doi.org/10.1007/s11721-007-0004-y
    162 rdf:type schema:CreativeWork
    163 https://app.dimensions.ai/details/publication/pub.1107021712 schema:CreativeWork
    164 https://doi.org/10.1016/j.aei.2016.11.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032484930
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1016/j.asoc.2014.07.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048444540
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1016/j.future.2017.05.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086046086
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1016/j.jnca.2016.11.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036225235
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1016/j.jss.2015.08.049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004334185
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1016/j.procs.2015.09.170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022431179
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1080/03052150500384759 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022235354
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1109/imis.2011.129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093754197
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1109/iota.2016.7562757 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094543371
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1109/mcse.2013.39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061398579
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1109/riot.2015.7104901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094285524
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1109/smartmile.2013.6708196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094059665
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1147/jrd.2010.2048257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063179133
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.14201/adcaij2015428998 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067207205
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1504/ijbic.2011.038700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067436783
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1504/ijmmno.2010.035430 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067475866
    195 rdf:type schema:CreativeWork
    196 https://www.grid.ac/institutes/grid.15878.33 schema:alternateName Paris 8 University
    197 schema:name Paris 8 University
    198 rdf:type schema:Organization
    199 https://www.grid.ac/institutes/grid.7778.f schema:alternateName University of Calabria
    200 schema:name CNR - National Research Council of Italy - Institute for High Performance Computing and Networking (ICAR)
    201 Università della Calabria
    202 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...