Research on a New Automatic Generation Algorithm of Concept Map Based on Text Clustering and Association Rules Mining View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018-07-06

AUTHORS

Zengzhen Shao , Yancong Li , Xiao Wang , Xuechen Zhao , Yanhui Guo

ABSTRACT

As an important teaching tool of visualization, the concept map has become a hot spot in the field of smart education. The traditional concept map generation algorithm is hard to guarantee the construction process and quality because of the huge amount of work and the great influence of the expert experience. A TC-ARM algorithm for automatic generation of hybrid concept map based on text clustering and association rules mining is proposed. This algorithm takes full account of the attributes of the relationship between concepts, uses text clustering technology to replace the relationship between artificial mining concepts and test questions, combines association rules mining methods to generate the concept maps, and introduces consistency of answer record parameter to improve the efficiency of concept map generation. The experimental results show that the TC-ARM algorithm can automatically and rapidly construct the concept map, which not only reduces the impact of outside experts, but also dynamically adjusts the concept map based on the basic data. The concept map generated by the TC-ARM algorithm expresses the relationship between the concepts and the degree of closeness through the relationship pairs and relationship strength, and can clearly show the structural relationship between concepts, provide instructional optimization guidance for knowledge visualization. More... »

PAGES

479-490

References to SciGraph publications

  • 2003. Different Kinds of Comparisons between Fuzzy Conceptual Graphs in CONCEPTUAL STRUCTURES FOR KNOWLEDGE CREATION AND COMMUNICATION
  • 2017. Apriori Algorithm in ENCYCLOPEDIA OF MACHINE LEARNING AND DATA MINING
  • 2007. Incomplete and Fuzzy Conceptual Graphs to Automatically Index Medical Reports in NATURAL LANGUAGE PROCESSING AND INFORMATION SYSTEMS
  • 2016. Smart Education and e-Learning 2016 in NONE
  • 2015. An Efficient Data Mining Approach to Concept Map Generation for Adaptive Learning in ADVANCES IN DATA MINING: APPLICATIONS AND THEORETICAL ASPECTS
  • Book

    TITLE

    Intelligent Computing Theories and Application

    ISBN

    978-3-319-95929-0
    978-3-319-95930-6

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-319-95930-6_44

    DOI

    http://dx.doi.org/10.1007/978-3-319-95930-6_44

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1105373883


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Shandong Normal University", 
              "id": "https://www.grid.ac/institutes/grid.410585.d", 
              "name": [
                "School of Data Science and Computer Science, Shandong Women\u2019s University, 250002, Jinan, China", 
                "School of Information Science and Engineering, Shandong Normal University, 250014, Jinan, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shao", 
            "givenName": "Zengzhen", 
            "id": "sg:person.07615037473.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07615037473.39"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Shandong Normal University", 
              "id": "https://www.grid.ac/institutes/grid.410585.d", 
              "name": [
                "School of Information Science and Engineering, Shandong Normal University, 250014, Jinan, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Yancong", 
            "id": "sg:person.012065504610.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012065504610.35"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Shandong Normal University", 
              "id": "https://www.grid.ac/institutes/grid.410585.d", 
              "name": [
                "School of Information Science and Engineering, Shandong Normal University, 250014, Jinan, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Xiao", 
            "id": "sg:person.012663065210.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012663065210.18"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Shandong Women\u2019s University", 
              "id": "https://www.grid.ac/institutes/grid.495262.e", 
              "name": [
                "School of Data Science and Computer Science, Shandong Women\u2019s University, 250002, Jinan, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhao", 
            "givenName": "Xuechen", 
            "id": "sg:person.016054062471.60", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016054062471.60"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Shandong Women\u2019s University", 
              "id": "https://www.grid.ac/institutes/grid.495262.e", 
              "name": [
                "School of Data Science and Computer Science, Shandong Women\u2019s University, 250002, Jinan, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Guo", 
            "givenName": "Yanhui", 
            "id": "sg:person.011017664212.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011017664212.30"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.eswa.2007.11.049", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006122147"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-73351-5_21", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006567975", 
              "https://doi.org/10.1007/978-3-540-73351-5_21"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-73351-5_21", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006567975", 
              "https://doi.org/10.1007/978-3-540-73351-5_21"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/tea.3660310109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007196016"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eswa.2009.12.060", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014203410"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eswa.2007.06.013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025372168"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1390334.1390409", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031215374"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-45091-7_4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039915855", 
              "https://doi.org/10.1007/978-3-540-45091-7_4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-45091-7_4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039915855", 
              "https://doi.org/10.1007/978-3-540-45091-7_4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-20910-4_18", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044913728", 
              "https://doi.org/10.1007/978-3-319-20910-4_18"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eswa.2012.11.018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052503713"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/170036.170072", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063157468"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4899-7687-1_27", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084848130", 
              "https://doi.org/10.1007/978-1-4899-7687-1_27"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4899-7687-1_27", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084848130", 
              "https://doi.org/10.1007/978-1-4899-7687-1_27"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-39690-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084927593", 
              "https://doi.org/10.1007/978-3-319-39690-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.compedu.2017.08.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091051983"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/cbo9781139173469", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098663941"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/3167132.3234663", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105354256"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/3167132.3234663", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105354256"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-07-06", 
        "datePublishedReg": "2018-07-06", 
        "description": "As an important teaching tool of visualization, the concept map has become a hot spot in the field of smart education. The traditional concept map generation algorithm is hard to guarantee the construction process and quality because of the huge amount of work and the great influence of the expert experience. A TC-ARM algorithm for automatic generation of hybrid concept map based on text clustering and association rules mining is proposed. This algorithm takes full account of the attributes of the relationship between concepts, uses text clustering technology to replace the relationship between artificial mining concepts and test questions, combines association rules mining methods to generate the concept maps, and introduces consistency of answer record parameter to improve the efficiency of concept map generation. The experimental results show that the TC-ARM algorithm can automatically and rapidly construct the concept map, which not only reduces the impact of outside experts, but also dynamically adjusts the concept map based on the basic data. The concept map generated by the TC-ARM algorithm expresses the relationship between the concepts and the degree of closeness through the relationship pairs and relationship strength, and can clearly show the structural relationship between concepts, provide instructional optimization guidance for knowledge visualization.", 
        "editor": [
          {
            "familyName": "Huang", 
            "givenName": "De-Shuang", 
            "type": "Person"
          }, 
          {
            "familyName": "Bevilacqua", 
            "givenName": "Vitoantonio", 
            "type": "Person"
          }, 
          {
            "familyName": "Premaratne", 
            "givenName": "Prashan", 
            "type": "Person"
          }, 
          {
            "familyName": "Gupta", 
            "givenName": "Phalguni", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-319-95930-6_44", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-319-95929-0", 
            "978-3-319-95930-6"
          ], 
          "name": "Intelligent Computing Theories and Application", 
          "type": "Book"
        }, 
        "name": "Research on a New Automatic Generation Algorithm of Concept Map Based on Text Clustering and Association Rules Mining", 
        "pagination": "479-490", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-319-95930-6_44"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "9eb0aaed6e9b3e476721f3c62862d6b1a52583965c716f9404a30e2f64ba5391"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1105373883"
            ]
          }
        ], 
        "publisher": {
          "location": "Cham", 
          "name": "Springer International Publishing", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-319-95930-6_44", 
          "https://app.dimensions.ai/details/publication/pub.1105373883"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-16T05:00", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000325_0000000325/records_100794_00000000.jsonl", 
        "type": "Chapter", 
        "url": "https://link.springer.com/10.1007%2F978-3-319-95930-6_44"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-95930-6_44'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-95930-6_44'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-95930-6_44'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-95930-6_44'


     

    This table displays all metadata directly associated to this object as RDF triples.

    162 TRIPLES      23 PREDICATES      41 URIs      19 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-319-95930-6_44 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N38a0323fd9604210804030f9c4a7d2f2
    4 schema:citation sg:pub.10.1007/978-1-4899-7687-1_27
    5 sg:pub.10.1007/978-3-319-20910-4_18
    6 sg:pub.10.1007/978-3-319-39690-3
    7 sg:pub.10.1007/978-3-540-45091-7_4
    8 sg:pub.10.1007/978-3-540-73351-5_21
    9 https://doi.org/10.1002/tea.3660310109
    10 https://doi.org/10.1016/j.compedu.2017.08.001
    11 https://doi.org/10.1016/j.eswa.2007.06.013
    12 https://doi.org/10.1016/j.eswa.2007.11.049
    13 https://doi.org/10.1016/j.eswa.2009.12.060
    14 https://doi.org/10.1016/j.eswa.2012.11.018
    15 https://doi.org/10.1017/cbo9781139173469
    16 https://doi.org/10.1145/1390334.1390409
    17 https://doi.org/10.1145/170036.170072
    18 https://doi.org/10.1145/3167132.3234663
    19 schema:datePublished 2018-07-06
    20 schema:datePublishedReg 2018-07-06
    21 schema:description As an important teaching tool of visualization, the concept map has become a hot spot in the field of smart education. The traditional concept map generation algorithm is hard to guarantee the construction process and quality because of the huge amount of work and the great influence of the expert experience. A TC-ARM algorithm for automatic generation of hybrid concept map based on text clustering and association rules mining is proposed. This algorithm takes full account of the attributes of the relationship between concepts, uses text clustering technology to replace the relationship between artificial mining concepts and test questions, combines association rules mining methods to generate the concept maps, and introduces consistency of answer record parameter to improve the efficiency of concept map generation. The experimental results show that the TC-ARM algorithm can automatically and rapidly construct the concept map, which not only reduces the impact of outside experts, but also dynamically adjusts the concept map based on the basic data. The concept map generated by the TC-ARM algorithm expresses the relationship between the concepts and the degree of closeness through the relationship pairs and relationship strength, and can clearly show the structural relationship between concepts, provide instructional optimization guidance for knowledge visualization.
    22 schema:editor Nde43a5e9792341fdbde3b7451c7761a1
    23 schema:genre chapter
    24 schema:inLanguage en
    25 schema:isAccessibleForFree false
    26 schema:isPartOf Ndbf4a2553faf429583821f6d65ee9c26
    27 schema:name Research on a New Automatic Generation Algorithm of Concept Map Based on Text Clustering and Association Rules Mining
    28 schema:pagination 479-490
    29 schema:productId N3ad4e92345ed416299cca59e344e3737
    30 Ne88575dcd7e94f9aa6efefafe5228925
    31 Nea710e926db64f0180a6c8b20a6fa104
    32 schema:publisher N444e2afcdc2f4ccc8e1ead1ad66f1f77
    33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105373883
    34 https://doi.org/10.1007/978-3-319-95930-6_44
    35 schema:sdDatePublished 2019-04-16T05:00
    36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    37 schema:sdPublisher Na0f44f2fe0a74c3eac8cc74fafa5ae23
    38 schema:url https://link.springer.com/10.1007%2F978-3-319-95930-6_44
    39 sgo:license sg:explorer/license/
    40 sgo:sdDataset chapters
    41 rdf:type schema:Chapter
    42 N0df178b5dfd94d17b1ec30688456c5c1 schema:familyName Bevilacqua
    43 schema:givenName Vitoantonio
    44 rdf:type schema:Person
    45 N17ff8d57084f4892aea006140ed86e17 rdf:first N968361a775504f1ea0038bc72cbf5970
    46 rdf:rest rdf:nil
    47 N2e61a46ca1cb47c88375e28f5532c47e rdf:first sg:person.012065504610.35
    48 rdf:rest N7aa8d45eb33f47d8a044094d5a0b4631
    49 N3656d4b4b71442589922ef8048a248b1 rdf:first sg:person.011017664212.30
    50 rdf:rest rdf:nil
    51 N38a0323fd9604210804030f9c4a7d2f2 rdf:first sg:person.07615037473.39
    52 rdf:rest N2e61a46ca1cb47c88375e28f5532c47e
    53 N3ad4e92345ed416299cca59e344e3737 schema:name dimensions_id
    54 schema:value pub.1105373883
    55 rdf:type schema:PropertyValue
    56 N444e2afcdc2f4ccc8e1ead1ad66f1f77 schema:location Cham
    57 schema:name Springer International Publishing
    58 rdf:type schema:Organisation
    59 N54d734f0d3744df6a94173d0bc144017 rdf:first N6613d00d543148f4b6f5ccd2df81c23e
    60 rdf:rest N17ff8d57084f4892aea006140ed86e17
    61 N6613d00d543148f4b6f5ccd2df81c23e schema:familyName Premaratne
    62 schema:givenName Prashan
    63 rdf:type schema:Person
    64 N7aa8d45eb33f47d8a044094d5a0b4631 rdf:first sg:person.012663065210.18
    65 rdf:rest N859cec8cbf8443c7a8898aca9a611ee4
    66 N859cec8cbf8443c7a8898aca9a611ee4 rdf:first sg:person.016054062471.60
    67 rdf:rest N3656d4b4b71442589922ef8048a248b1
    68 N968361a775504f1ea0038bc72cbf5970 schema:familyName Gupta
    69 schema:givenName Phalguni
    70 rdf:type schema:Person
    71 Na0f44f2fe0a74c3eac8cc74fafa5ae23 schema:name Springer Nature - SN SciGraph project
    72 rdf:type schema:Organization
    73 Nb5d466b725bb4e91b6435d9c8687a92d schema:familyName Huang
    74 schema:givenName De-Shuang
    75 rdf:type schema:Person
    76 Ndbf4a2553faf429583821f6d65ee9c26 schema:isbn 978-3-319-95929-0
    77 978-3-319-95930-6
    78 schema:name Intelligent Computing Theories and Application
    79 rdf:type schema:Book
    80 Nde43a5e9792341fdbde3b7451c7761a1 rdf:first Nb5d466b725bb4e91b6435d9c8687a92d
    81 rdf:rest Ne9afad6fb296456b83038bdfbb61f9be
    82 Ne88575dcd7e94f9aa6efefafe5228925 schema:name readcube_id
    83 schema:value 9eb0aaed6e9b3e476721f3c62862d6b1a52583965c716f9404a30e2f64ba5391
    84 rdf:type schema:PropertyValue
    85 Ne9afad6fb296456b83038bdfbb61f9be rdf:first N0df178b5dfd94d17b1ec30688456c5c1
    86 rdf:rest N54d734f0d3744df6a94173d0bc144017
    87 Nea710e926db64f0180a6c8b20a6fa104 schema:name doi
    88 schema:value 10.1007/978-3-319-95930-6_44
    89 rdf:type schema:PropertyValue
    90 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    91 schema:name Information and Computing Sciences
    92 rdf:type schema:DefinedTerm
    93 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    94 schema:name Artificial Intelligence and Image Processing
    95 rdf:type schema:DefinedTerm
    96 sg:person.011017664212.30 schema:affiliation https://www.grid.ac/institutes/grid.495262.e
    97 schema:familyName Guo
    98 schema:givenName Yanhui
    99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011017664212.30
    100 rdf:type schema:Person
    101 sg:person.012065504610.35 schema:affiliation https://www.grid.ac/institutes/grid.410585.d
    102 schema:familyName Li
    103 schema:givenName Yancong
    104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012065504610.35
    105 rdf:type schema:Person
    106 sg:person.012663065210.18 schema:affiliation https://www.grid.ac/institutes/grid.410585.d
    107 schema:familyName Wang
    108 schema:givenName Xiao
    109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012663065210.18
    110 rdf:type schema:Person
    111 sg:person.016054062471.60 schema:affiliation https://www.grid.ac/institutes/grid.495262.e
    112 schema:familyName Zhao
    113 schema:givenName Xuechen
    114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016054062471.60
    115 rdf:type schema:Person
    116 sg:person.07615037473.39 schema:affiliation https://www.grid.ac/institutes/grid.410585.d
    117 schema:familyName Shao
    118 schema:givenName Zengzhen
    119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07615037473.39
    120 rdf:type schema:Person
    121 sg:pub.10.1007/978-1-4899-7687-1_27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084848130
    122 https://doi.org/10.1007/978-1-4899-7687-1_27
    123 rdf:type schema:CreativeWork
    124 sg:pub.10.1007/978-3-319-20910-4_18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044913728
    125 https://doi.org/10.1007/978-3-319-20910-4_18
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1007/978-3-319-39690-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084927593
    128 https://doi.org/10.1007/978-3-319-39690-3
    129 rdf:type schema:CreativeWork
    130 sg:pub.10.1007/978-3-540-45091-7_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039915855
    131 https://doi.org/10.1007/978-3-540-45091-7_4
    132 rdf:type schema:CreativeWork
    133 sg:pub.10.1007/978-3-540-73351-5_21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006567975
    134 https://doi.org/10.1007/978-3-540-73351-5_21
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1002/tea.3660310109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007196016
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1016/j.compedu.2017.08.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091051983
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1016/j.eswa.2007.06.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025372168
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1016/j.eswa.2007.11.049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006122147
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1016/j.eswa.2009.12.060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014203410
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1016/j.eswa.2012.11.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052503713
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1017/cbo9781139173469 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098663941
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1145/1390334.1390409 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031215374
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1145/170036.170072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063157468
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1145/3167132.3234663 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105354256
    155 rdf:type schema:CreativeWork
    156 https://www.grid.ac/institutes/grid.410585.d schema:alternateName Shandong Normal University
    157 schema:name School of Data Science and Computer Science, Shandong Women’s University, 250002, Jinan, China
    158 School of Information Science and Engineering, Shandong Normal University, 250014, Jinan, China
    159 rdf:type schema:Organization
    160 https://www.grid.ac/institutes/grid.495262.e schema:alternateName Shandong Women’s University
    161 schema:name School of Data Science and Computer Science, Shandong Women’s University, 250002, Jinan, China
    162 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...