The Biases of Thinking Fast and Thinking Slow View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2018-09-28

AUTHORS

Dirk Streeb , Min Chen , Daniel A. Keim

ABSTRACT

Visualization is a human-centric process, which is inevitably associated with potential biases in humans’ judgment and decision-making. While the discussions on humans’ biases have been heavily influenced by the work of Daniel Kahneman as summarized in his book “Thinking, Fast and Slow’, there have also been viewpoints in psychology in favor of heuristics, such as by Gigerenzer. In this chapter, we present a balanced discourse on the humans’ heuristics and biases as the two sides of the same coin. In particular, we examine these two aspects from a probabilistic perspective, and relate them to the notions of global and local sampling. We use three case studies in Kahneman’s book to illustrate the potential biases of human- and machine-centric decision processes. Our discourse leads to a concrete conclusion that visual analytics, where interactive visualization is integrated with statistics and algorithms, offers an effective and efficient means to overcome biases in data intelligence. More... »

PAGES

97-107

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-95831-6_8

DOI

http://dx.doi.org/10.1007/978-3-319-95831-6_8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107272506


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Data Analysis and Visualization Group at the University of Konstanz, Konstanz, Germany", 
          "id": "http://www.grid.ac/institutes/grid.9811.1", 
          "name": [
            "Data Analysis and Visualization Group at the University of Konstanz, Konstanz, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Streeb", 
        "givenName": "Dirk", 
        "id": "sg:person.014155236503.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014155236503.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Oxford e-Research Centre at the University of Oxford, Oxford, UK", 
          "id": "http://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Oxford e-Research Centre at the University of Oxford, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Min", 
        "id": "sg:person.01225240530.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01225240530.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Data Analysis and Visualization Group at the University of Konstanz, Konstanz, Germany", 
          "id": "http://www.grid.ac/institutes/grid.9811.1", 
          "name": [
            "Data Analysis and Visualization Group at the University of Konstanz, Konstanz, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Keim", 
        "givenName": "Daniel A.", 
        "id": "sg:person.0635776571.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635776571.01"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2018-09-28", 
    "datePublishedReg": "2018-09-28", 
    "description": "Visualization is a human-centric process, which is inevitably associated with potential biases in humans\u2019 judgment and decision-making. While the discussions on humans\u2019 biases have been heavily influenced by the work of Daniel Kahneman as summarized in his book \u201cThinking, Fast and Slow\u2019, there have also been viewpoints in psychology in favor of heuristics, such as by Gigerenzer. In this chapter, we present a balanced discourse on the humans\u2019 heuristics and biases as the two sides of the same coin. In particular, we examine these two aspects from a probabilistic perspective, and relate them to the notions of global and local sampling. We use three case studies in Kahneman\u2019s book to illustrate the potential biases of human- and machine-centric decision processes. Our discourse leads to a concrete conclusion that visual analytics, where interactive visualization is integrated with statistics and algorithms, offers an effective and efficient means to overcome biases in data intelligence.", 
    "editor": [
      {
        "familyName": "Ellis", 
        "givenName": "Geoffrey", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-95831-6_8", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-319-95830-9", 
        "978-3-319-95831-6"
      ], 
      "name": "Cognitive Biases in Visualizations", 
      "type": "Book"
    }, 
    "keywords": [
      "human-centric processes", 
      "visual analytics", 
      "data intelligence", 
      "interactive visualization", 
      "probabilistic perspective", 
      "decision process", 
      "heuristics", 
      "visualization", 
      "analytics", 
      "intelligence", 
      "case study", 
      "balanced discourse", 
      "efficient means", 
      "algorithm", 
      "local sampling", 
      "viewpoint", 
      "process", 
      "humans", 
      "work", 
      "notion", 
      "aspects", 
      "coins", 
      "statistics", 
      "biases", 
      "same coin", 
      "potential biases", 
      "book", 
      "chapter", 
      "perspective", 
      "means", 
      "judgments", 
      "concrete conclusions", 
      "sampling", 
      "discussion", 
      "thinking", 
      "Daniel Kahneman", 
      "psychology", 
      "side", 
      "Gigerenzer", 
      "Kahneman", 
      "study", 
      "favor", 
      "discourse", 
      "conclusion"
    ], 
    "name": "The Biases of Thinking Fast and Thinking Slow", 
    "pagination": "97-107", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107272506"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-95831-6_8"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-95831-6_8", 
      "https://app.dimensions.ai/details/publication/pub.1107272506"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-10-01T06:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/chapter/chapter_302.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-95831-6_8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-95831-6_8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-95831-6_8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-95831-6_8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-95831-6_8'


 

This table displays all metadata directly associated to this object as RDF triples.

120 TRIPLES      22 PREDICATES      67 URIs      60 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-95831-6_8 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N4de1cd6f7d9d4522bfa2871cb5c9f9c1
4 schema:datePublished 2018-09-28
5 schema:datePublishedReg 2018-09-28
6 schema:description Visualization is a human-centric process, which is inevitably associated with potential biases in humans’ judgment and decision-making. While the discussions on humans’ biases have been heavily influenced by the work of Daniel Kahneman as summarized in his book “Thinking, Fast and Slow’, there have also been viewpoints in psychology in favor of heuristics, such as by Gigerenzer. In this chapter, we present a balanced discourse on the humans’ heuristics and biases as the two sides of the same coin. In particular, we examine these two aspects from a probabilistic perspective, and relate them to the notions of global and local sampling. We use three case studies in Kahneman’s book to illustrate the potential biases of human- and machine-centric decision processes. Our discourse leads to a concrete conclusion that visual analytics, where interactive visualization is integrated with statistics and algorithms, offers an effective and efficient means to overcome biases in data intelligence.
7 schema:editor Na62943963fdd4ec08cabe0f97aaf7a5c
8 schema:genre chapter
9 schema:isAccessibleForFree true
10 schema:isPartOf N2351f30d18b64539a1199cf33a4f4af7
11 schema:keywords Daniel Kahneman
12 Gigerenzer
13 Kahneman
14 algorithm
15 analytics
16 aspects
17 balanced discourse
18 biases
19 book
20 case study
21 chapter
22 coins
23 conclusion
24 concrete conclusions
25 data intelligence
26 decision process
27 discourse
28 discussion
29 efficient means
30 favor
31 heuristics
32 human-centric processes
33 humans
34 intelligence
35 interactive visualization
36 judgments
37 local sampling
38 means
39 notion
40 perspective
41 potential biases
42 probabilistic perspective
43 process
44 psychology
45 same coin
46 sampling
47 side
48 statistics
49 study
50 thinking
51 viewpoint
52 visual analytics
53 visualization
54 work
55 schema:name The Biases of Thinking Fast and Thinking Slow
56 schema:pagination 97-107
57 schema:productId N4e07c0ec23714cdd8dc5a690396a3a5a
58 N9cb239d341d54e2ea4f08486eb81ea44
59 schema:publisher Na3d4edc5626b476997c7384cb623b50e
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107272506
61 https://doi.org/10.1007/978-3-319-95831-6_8
62 schema:sdDatePublished 2022-10-01T06:57
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher N4be21f8a1d174e14abc9ae1bec23eff7
65 schema:url https://doi.org/10.1007/978-3-319-95831-6_8
66 sgo:license sg:explorer/license/
67 sgo:sdDataset chapters
68 rdf:type schema:Chapter
69 N1fa4e4d06a6a4cf482a6c5254a2c3055 rdf:first sg:person.01225240530.74
70 rdf:rest N2883ea048dd244adbcc6df92c36a2406
71 N2351f30d18b64539a1199cf33a4f4af7 schema:isbn 978-3-319-95830-9
72 978-3-319-95831-6
73 schema:name Cognitive Biases in Visualizations
74 rdf:type schema:Book
75 N2883ea048dd244adbcc6df92c36a2406 rdf:first sg:person.0635776571.01
76 rdf:rest rdf:nil
77 N4be21f8a1d174e14abc9ae1bec23eff7 schema:name Springer Nature - SN SciGraph project
78 rdf:type schema:Organization
79 N4de1cd6f7d9d4522bfa2871cb5c9f9c1 rdf:first sg:person.014155236503.06
80 rdf:rest N1fa4e4d06a6a4cf482a6c5254a2c3055
81 N4e07c0ec23714cdd8dc5a690396a3a5a schema:name dimensions_id
82 schema:value pub.1107272506
83 rdf:type schema:PropertyValue
84 N9cb239d341d54e2ea4f08486eb81ea44 schema:name doi
85 schema:value 10.1007/978-3-319-95831-6_8
86 rdf:type schema:PropertyValue
87 Na3d4edc5626b476997c7384cb623b50e schema:name Springer Nature
88 rdf:type schema:Organisation
89 Na62943963fdd4ec08cabe0f97aaf7a5c rdf:first Nca134c448e9649cf86d0a2004bfaf22c
90 rdf:rest rdf:nil
91 Nca134c448e9649cf86d0a2004bfaf22c schema:familyName Ellis
92 schema:givenName Geoffrey
93 rdf:type schema:Person
94 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
95 schema:name Information and Computing Sciences
96 rdf:type schema:DefinedTerm
97 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
98 schema:name Artificial Intelligence and Image Processing
99 rdf:type schema:DefinedTerm
100 sg:person.01225240530.74 schema:affiliation grid-institutes:grid.4991.5
101 schema:familyName Chen
102 schema:givenName Min
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01225240530.74
104 rdf:type schema:Person
105 sg:person.014155236503.06 schema:affiliation grid-institutes:grid.9811.1
106 schema:familyName Streeb
107 schema:givenName Dirk
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014155236503.06
109 rdf:type schema:Person
110 sg:person.0635776571.01 schema:affiliation grid-institutes:grid.9811.1
111 schema:familyName Keim
112 schema:givenName Daniel A.
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635776571.01
114 rdf:type schema:Person
115 grid-institutes:grid.4991.5 schema:alternateName Oxford e-Research Centre at the University of Oxford, Oxford, UK
116 schema:name Oxford e-Research Centre at the University of Oxford, Oxford, UK
117 rdf:type schema:Organization
118 grid-institutes:grid.9811.1 schema:alternateName Data Analysis and Visualization Group at the University of Konstanz, Konstanz, Germany
119 schema:name Data Analysis and Visualization Group at the University of Konstanz, Konstanz, Germany
120 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...