Demonstration: Face Emotion Recognition (FER) with Deep Learning – Web Based Interface View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018-07-25

AUTHORS

Andreas Pester , Kevin Galler

ABSTRACT

In this project, a pre-trained, python based deep learning algorithm for recognition of the emotional expression of a face on an image is used, to be accessed and executed in an online experiment. Therefore, newest web technologies are used, to get access to the front camera of the used device, to extract a picture of the face out of a continuous video stream. When the deep learning algorithm has finished its operation of detecting the emotions of the face, the results will then be displayed on the website. More... »

PAGES

466-470

Book

TITLE

Smart Industry & Smart Education

ISBN

978-3-319-95677-0
978-3-319-95678-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-95678-7_52

DOI

http://dx.doi.org/10.1007/978-3-319-95678-7_52

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105803664


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Carinthia University of Applied Sciences, Villach, Austria", 
          "id": "http://www.grid.ac/institutes/grid.452087.c", 
          "name": [
            "Carinthia University of Applied Sciences, Villach, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pester", 
        "givenName": "Andreas", 
        "id": "sg:person.014676007451.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014676007451.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Carinthia University of Applied Sciences, Villach, Austria", 
          "id": "http://www.grid.ac/institutes/grid.452087.c", 
          "name": [
            "Carinthia University of Applied Sciences, Villach, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Galler", 
        "givenName": "Kevin", 
        "type": "Person"
      }
    ], 
    "datePublished": "2018-07-25", 
    "datePublishedReg": "2018-07-25", 
    "description": "Abstract\nIn this project, a pre-trained, python based deep learning algorithm for recognition of the emotional expression of a face on an image is used, to be accessed and executed in an online experiment. Therefore, newest web technologies are used, to get access to the front camera of the used device, to extract a picture of the face out of a continuous video stream. When the deep learning algorithm has finished its operation of detecting the emotions of the face, the results will then be displayed on the website.", 
    "editor": [
      {
        "familyName": "Auer", 
        "givenName": "Michael E.", 
        "type": "Person"
      }, 
      {
        "familyName": "Langmann", 
        "givenName": "Reinhard", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-95678-7_52", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-95677-0", 
        "978-3-319-95678-7"
      ], 
      "name": "Smart Industry & Smart Education", 
      "type": "Book"
    }, 
    "keywords": [
      "deep learning algorithms", 
      "learning algorithm", 
      "continuous video stream", 
      "new web technologies", 
      "video streams", 
      "Web technologies", 
      "front camera", 
      "emotion recognition", 
      "algorithm", 
      "used device", 
      "online experiment", 
      "recognition", 
      "Python", 
      "camera", 
      "images", 
      "websites", 
      "technology", 
      "interface", 
      "access", 
      "streams", 
      "operation", 
      "project", 
      "devices", 
      "face", 
      "experiments", 
      "results", 
      "picture", 
      "emotions", 
      "emotional expression", 
      "expression", 
      "Deep Learning \u2013 Web Based Interface", 
      "Learning \u2013 Web Based Interface", 
      "Based Interface"
    ], 
    "name": "Demonstration: Face Emotion Recognition (FER) with Deep Learning \u2013 Web Based Interface", 
    "pagination": "466-470", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105803664"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-95678-7_52"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-95678-7_52", 
      "https://app.dimensions.ai/details/publication/pub.1105803664"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-11-01T18:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/chapter/chapter_265.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-95678-7_52"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-95678-7_52'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-95678-7_52'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-95678-7_52'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-95678-7_52'


 

This table displays all metadata directly associated to this object as RDF triples.

104 TRIPLES      23 PREDICATES      58 URIs      51 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-95678-7_52 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Ne1273631785a4e4e816f7805579f1697
4 schema:datePublished 2018-07-25
5 schema:datePublishedReg 2018-07-25
6 schema:description Abstract In this project, a pre-trained, python based deep learning algorithm for recognition of the emotional expression of a face on an image is used, to be accessed and executed in an online experiment. Therefore, newest web technologies are used, to get access to the front camera of the used device, to extract a picture of the face out of a continuous video stream. When the deep learning algorithm has finished its operation of detecting the emotions of the face, the results will then be displayed on the website.
7 schema:editor N10f3b6ad9e89482fa372af1c8ed81e90
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N6b15926b84954ecf8a6a7cdc5957ce93
12 schema:keywords Based Interface
13 Deep Learning – Web Based Interface
14 Learning – Web Based Interface
15 Python
16 Web technologies
17 access
18 algorithm
19 camera
20 continuous video stream
21 deep learning algorithms
22 devices
23 emotion recognition
24 emotional expression
25 emotions
26 experiments
27 expression
28 face
29 front camera
30 images
31 interface
32 learning algorithm
33 new web technologies
34 online experiment
35 operation
36 picture
37 project
38 recognition
39 results
40 streams
41 technology
42 used device
43 video streams
44 websites
45 schema:name Demonstration: Face Emotion Recognition (FER) with Deep Learning – Web Based Interface
46 schema:pagination 466-470
47 schema:productId N30c2197623cb44629cd8fc3515bc6c66
48 Nb46cddaa4ecc4d23a4b925661d335400
49 schema:publisher Na4addac20d1b4b1fbdd47cd578037269
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105803664
51 https://doi.org/10.1007/978-3-319-95678-7_52
52 schema:sdDatePublished 2021-11-01T18:53
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher N803cdc3edbd0445dbc68dcac0b50dedf
55 schema:url https://doi.org/10.1007/978-3-319-95678-7_52
56 sgo:license sg:explorer/license/
57 sgo:sdDataset chapters
58 rdf:type schema:Chapter
59 N051e440f6c3e4a758d2d45fd5bfc0629 schema:familyName Langmann
60 schema:givenName Reinhard
61 rdf:type schema:Person
62 N10f3b6ad9e89482fa372af1c8ed81e90 rdf:first Nfdf95df65ded4ba79ab623cbe8f8e0d4
63 rdf:rest Nbd394b18063643708f9bda08227c6e8a
64 N234c1128c1774234b69d2e7f4b327016 rdf:first Nb8f97fb8b38f4163b847947104c92432
65 rdf:rest rdf:nil
66 N30c2197623cb44629cd8fc3515bc6c66 schema:name doi
67 schema:value 10.1007/978-3-319-95678-7_52
68 rdf:type schema:PropertyValue
69 N6b15926b84954ecf8a6a7cdc5957ce93 schema:isbn 978-3-319-95677-0
70 978-3-319-95678-7
71 schema:name Smart Industry & Smart Education
72 rdf:type schema:Book
73 N803cdc3edbd0445dbc68dcac0b50dedf schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 Na4addac20d1b4b1fbdd47cd578037269 schema:name Springer Nature
76 rdf:type schema:Organisation
77 Nb46cddaa4ecc4d23a4b925661d335400 schema:name dimensions_id
78 schema:value pub.1105803664
79 rdf:type schema:PropertyValue
80 Nb8f97fb8b38f4163b847947104c92432 schema:affiliation grid-institutes:grid.452087.c
81 schema:familyName Galler
82 schema:givenName Kevin
83 rdf:type schema:Person
84 Nbd394b18063643708f9bda08227c6e8a rdf:first N051e440f6c3e4a758d2d45fd5bfc0629
85 rdf:rest rdf:nil
86 Ne1273631785a4e4e816f7805579f1697 rdf:first sg:person.014676007451.90
87 rdf:rest N234c1128c1774234b69d2e7f4b327016
88 Nfdf95df65ded4ba79ab623cbe8f8e0d4 schema:familyName Auer
89 schema:givenName Michael E.
90 rdf:type schema:Person
91 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
92 schema:name Information and Computing Sciences
93 rdf:type schema:DefinedTerm
94 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
95 schema:name Artificial Intelligence and Image Processing
96 rdf:type schema:DefinedTerm
97 sg:person.014676007451.90 schema:affiliation grid-institutes:grid.452087.c
98 schema:familyName Pester
99 schema:givenName Andreas
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014676007451.90
101 rdf:type schema:Person
102 grid-institutes:grid.452087.c schema:alternateName Carinthia University of Applied Sciences, Villach, Austria
103 schema:name Carinthia University of Applied Sciences, Villach, Austria
104 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...