Environmental Sound Recognition with Classical Machine Learning Algorithms View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018-07-25

AUTHORS

Nikolina Jekic , Andreas Pester

ABSTRACT

The field of study interested in the development of computer algorithm for transforming data into intelligent actions is known as machine learning. The paper investigates different machine learning classification algorithms and their effectiveness in environmental sound recognition. Efforts are made in selecting the suitable audio feature extraction technique and finding a direct connection between audio feature extraction technique and the quality of the algorithm performance. These techniques are compared to determine the most suitable for solving the problem of environmental sound recognition. More... »

PAGES

14-21

Book

TITLE

Smart Industry & Smart Education

ISBN

978-3-319-95677-0
978-3-319-95678-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-95678-7_2

DOI

http://dx.doi.org/10.1007/978-3-319-95678-7_2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105811809


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Carinthia University of Applied Sciences, Villach, Austria", 
          "id": "http://www.grid.ac/institutes/grid.452087.c", 
          "name": [
            "Carinthia University of Applied Sciences, Villach, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jekic", 
        "givenName": "Nikolina", 
        "id": "sg:person.015410655244.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015410655244.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Carinthia University of Applied Sciences, Villach, Austria", 
          "id": "http://www.grid.ac/institutes/grid.452087.c", 
          "name": [
            "Carinthia University of Applied Sciences, Villach, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pester", 
        "givenName": "Andreas", 
        "id": "sg:person.014676007451.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014676007451.90"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2018-07-25", 
    "datePublishedReg": "2018-07-25", 
    "description": "The field of study interested in the development of computer algorithm for transforming data into intelligent actions is known as machine learning. The paper investigates different machine learning classification algorithms and their effectiveness in environmental sound recognition. Efforts are made in selecting the suitable audio feature extraction technique and finding a direct connection between audio feature extraction technique and the quality of the algorithm performance. These techniques are compared to determine the most suitable for solving the problem of environmental sound recognition.", 
    "editor": [
      {
        "familyName": "Auer", 
        "givenName": "Michael E.", 
        "type": "Person"
      }, 
      {
        "familyName": "Langmann", 
        "givenName": "Reinhard", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-95678-7_2", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-95677-0", 
        "978-3-319-95678-7"
      ], 
      "name": "Smart Industry & Smart Education", 
      "type": "Book"
    }, 
    "keywords": [
      "environmental sound recognition", 
      "feature extraction techniques", 
      "sound recognition", 
      "Classical Machine Learning Algorithms", 
      "Machine Learning Algorithms", 
      "extraction techniques", 
      "learning algorithm", 
      "different machine", 
      "classification algorithm", 
      "intelligent action", 
      "algorithm performance", 
      "algorithm", 
      "computer algorithm", 
      "machine", 
      "recognition", 
      "technique", 
      "field of study", 
      "performance", 
      "direct connection", 
      "effectiveness", 
      "quality", 
      "efforts", 
      "connection", 
      "data", 
      "field", 
      "development", 
      "action", 
      "study", 
      "paper", 
      "problem", 
      "suitable audio feature extraction technique", 
      "audio feature extraction technique"
    ], 
    "name": "Environmental Sound Recognition with Classical Machine Learning Algorithms", 
    "pagination": "14-21", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105811809"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-95678-7_2"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-95678-7_2", 
      "https://app.dimensions.ai/details/publication/pub.1105811809"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-11-01T18:45", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/chapter/chapter_107.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-95678-7_2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-95678-7_2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-95678-7_2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-95678-7_2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-95678-7_2'


 

This table displays all metadata directly associated to this object as RDF triples.

104 TRIPLES      23 PREDICATES      57 URIs      50 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-95678-7_2 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N6075d90a30fd454ca6f07e969977eaf8
4 schema:datePublished 2018-07-25
5 schema:datePublishedReg 2018-07-25
6 schema:description The field of study interested in the development of computer algorithm for transforming data into intelligent actions is known as machine learning. The paper investigates different machine learning classification algorithms and their effectiveness in environmental sound recognition. Efforts are made in selecting the suitable audio feature extraction technique and finding a direct connection between audio feature extraction technique and the quality of the algorithm performance. These techniques are compared to determine the most suitable for solving the problem of environmental sound recognition.
7 schema:editor N3a2f1087988e4207a88818c619f429bb
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N13e8eeaaa95e42baaa540fd5bf7eda43
12 schema:keywords Classical Machine Learning Algorithms
13 Machine Learning Algorithms
14 action
15 algorithm
16 algorithm performance
17 audio feature extraction technique
18 classification algorithm
19 computer algorithm
20 connection
21 data
22 development
23 different machine
24 direct connection
25 effectiveness
26 efforts
27 environmental sound recognition
28 extraction techniques
29 feature extraction techniques
30 field
31 field of study
32 intelligent action
33 learning algorithm
34 machine
35 paper
36 performance
37 problem
38 quality
39 recognition
40 sound recognition
41 study
42 suitable audio feature extraction technique
43 technique
44 schema:name Environmental Sound Recognition with Classical Machine Learning Algorithms
45 schema:pagination 14-21
46 schema:productId Nbf2a5b156ade4d5c9ecd2e90cd0f8ce6
47 Ndd0b742876dc4ca18f200f2d7ee1dac1
48 schema:publisher N2cf2ca11b43b48f1ae750407c298679b
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105811809
50 https://doi.org/10.1007/978-3-319-95678-7_2
51 schema:sdDatePublished 2021-11-01T18:45
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher N5f7e5f499a1144678ecf2ca51b0d2494
54 schema:url https://doi.org/10.1007/978-3-319-95678-7_2
55 sgo:license sg:explorer/license/
56 sgo:sdDataset chapters
57 rdf:type schema:Chapter
58 N13e8eeaaa95e42baaa540fd5bf7eda43 schema:isbn 978-3-319-95677-0
59 978-3-319-95678-7
60 schema:name Smart Industry & Smart Education
61 rdf:type schema:Book
62 N2cf2ca11b43b48f1ae750407c298679b schema:name Springer Nature
63 rdf:type schema:Organisation
64 N3a2f1087988e4207a88818c619f429bb rdf:first Nc21ea157715748e6bb28be2de853eeb3
65 rdf:rest N5bf01fd005d344b29d4df3d7c5b77995
66 N5bf01fd005d344b29d4df3d7c5b77995 rdf:first N7d46a1c9b6e94e65bcff1df5e0254b7e
67 rdf:rest rdf:nil
68 N5f7e5f499a1144678ecf2ca51b0d2494 schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 N6075d90a30fd454ca6f07e969977eaf8 rdf:first sg:person.015410655244.76
71 rdf:rest Na2bdf39cc0df4868b1c72230eb2a7f7b
72 N7d46a1c9b6e94e65bcff1df5e0254b7e schema:familyName Langmann
73 schema:givenName Reinhard
74 rdf:type schema:Person
75 Na2bdf39cc0df4868b1c72230eb2a7f7b rdf:first sg:person.014676007451.90
76 rdf:rest rdf:nil
77 Nbf2a5b156ade4d5c9ecd2e90cd0f8ce6 schema:name dimensions_id
78 schema:value pub.1105811809
79 rdf:type schema:PropertyValue
80 Nc21ea157715748e6bb28be2de853eeb3 schema:familyName Auer
81 schema:givenName Michael E.
82 rdf:type schema:Person
83 Ndd0b742876dc4ca18f200f2d7ee1dac1 schema:name doi
84 schema:value 10.1007/978-3-319-95678-7_2
85 rdf:type schema:PropertyValue
86 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
87 schema:name Information and Computing Sciences
88 rdf:type schema:DefinedTerm
89 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
90 schema:name Artificial Intelligence and Image Processing
91 rdf:type schema:DefinedTerm
92 sg:person.014676007451.90 schema:affiliation grid-institutes:grid.452087.c
93 schema:familyName Pester
94 schema:givenName Andreas
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014676007451.90
96 rdf:type schema:Person
97 sg:person.015410655244.76 schema:affiliation grid-institutes:grid.452087.c
98 schema:familyName Jekic
99 schema:givenName Nikolina
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015410655244.76
101 rdf:type schema:Person
102 grid-institutes:grid.452087.c schema:alternateName Carinthia University of Applied Sciences, Villach, Austria
103 schema:name Carinthia University of Applied Sciences, Villach, Austria
104 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...